511 research outputs found

    A comparison of walk-in counselling and the wait list model for delivering counselling services

    Get PDF
    Background: Walk-in counselling has been used to reduce wait times but there are few controlled studies to compare outcomes between walk-in and the traditional model of service delivery. Aims: To compare change in psychological distress by clients receiving services from two models of service delivery, a walk-in counselling model and a traditional counselling model involving a wait list Method: Mixed methods sequential explanatory design including quantitative comparison of groups with one pre-test and two follow ups, and qualitative analysis of interviews with a subsample. 524 participants 16 years and older were recruited from two Family Counselling Agencies; the General Health Questionnaire assessed change in psychological distress; prior use of other mental health and instrumental services was also reported. Results: Hierarchical linear modelling revealed clients of the walk-in model improved faster and were less distressed at the 4-week follow-up compared to the traditional service delivery model. At the 10-week follow-up, both groups had improved and were similar. Participants receiving instrumental services prior to baseline improved more slowly. Qualitative interviews confirmed participants valued the accessibility of the walk-in model. Conclusions: This study improves methodologically on previous studies of walk-in counselling, an approach to service delivery that is not conducive to randomized controlled trials

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury

    Get PDF
    Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotypeNeurofarmacología del dolor de la Universidad de Granada (CTS-109)FPU grants from the Spanish Ministry of Education, Culture and Sports.Spanish Ministry of Economy and Competitiveness (MINECO, grant SAF2016-80540-R)the Junta de Andalucía (grant CTS 109)Esteve PharmaceuticalsEuropean Regional Development Fund (ERDF

    The Sound Sensation of Apical Electric Stimulation in Cochlear Implant Recipients with Contralateral Residual Hearing

    Get PDF
    BACKGROUND: Studies using vocoders as acoustic simulators of cochlear implants have generally focused on simulation of speech understanding, gender recognition, or music appreciation. The aim of the present experiment was to study the auditory sensation perceived by cochlear implant (CI) recipients with steady electrical stimulation on the most-apical electrode. METHODOLOGY/PRINCIPAL FINDINGS: Five unilateral CI users with contralateral residual hearing were asked to vary the parameters of an acoustic signal played to the non-implanted ear, in order to match its sensation to that of the electric stimulus. They also provided a rating of similarity between each acoustic sound they selected and the electric stimulus. On average across subjects, the sound rated as most similar was a complex signal with a concentration of energy around 523 Hz. This sound was inharmonic in 3 out of 5 subjects with a moderate, progressive increase in the spacing between the frequency components. CONCLUSIONS/SIGNIFICANCE: For these subjects, the sound sensation created by steady electric stimulation on the most-apical electrode was neither a white noise nor a pure tone, but a complex signal with a progressive increase in the spacing between the frequency components in 3 out of 5 subjects. Knowing whether the inharmonic nature of the sound was related to the fact that the non-implanted ear was impaired has to be explored in single-sided deafened patients with a contralateral CI. These results may be used in the future to better understand peripheral and central auditory processing in relation to cochlear implants

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    IL10 Low-Frequency Variants in Behçet's Disease Patients

    Get PDF
    To explain the missing heritability after the genome-wide association studies era, sequencing studies allow the identification of low-frequency variants with a stronger effect on disease risk. Common variants in the interleukin 10 gene (IL10) have been consistently associated with Behçet's disease (BD) and the goal of this study is to investigate the role of low-frequency IL10 variants in BD susceptibility

    Learning auditory space: generalization and long-term effects

    Get PDF
    Background: Previous findings have shown that humans can learn to localize with altered auditory space cues. Here we analyze such learning processes and their effects up to one month on both localization accuracy and sound externalization. Subjects were trained and retested, focusing on the effects of stimulus type in learning, stimulus type in localization, stimulus position, previous experience, externalization levels, and time. Method: We trained listeners in azimuth and elevation discrimination in two experiments. Half participated in the azimuth experiment first and half in the elevation first. In each experiment, half were trained in speech sounds and half in white noise. Retests were performed at several time intervals: just after training and one hour, one day, one week and one month later. In a control condition, we tested the effect of systematic retesting over time with post-tests only after training and either one day, one week, or one month later. Results: With training all participants lowered their localization errors. This benefit was still present one month after training. Participants were more accurate in the second training phase, revealing an effect of previous experience on a different task. Training with white noise led to better results than training with speech sounds. Moreover, the training benefit generalized to untrained stimulus-position pairs. Throughout the post-tests externalization levels increased. In the control condition the long-term localization improvement was not lower without additional contact with the trained sounds, but externalization levels were lower. Conclusion: Our findings suggest that humans adapt easily to altered auditory space cues and that such adaptation spreads to untrained positions and sound types. We propose that such learning depends on all available cues, but each cue type might be learned and retrieved differently. The process of localization learning is global, not limited to stimulus-position pairs, and it differs from externalization processes.Foundation for Science and TechnologyFEDE

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
    corecore