158 research outputs found

    Altered expression of topoisomerase IIα contributes to cross-resistant to etoposide K562/MX2 cell line by aberrant methylation

    Get PDF
    KRN 8602 (MX2) is a novel morpholino anthracycline derivative having the chemical structure 3′-deamino-3′-morpholino-13-deoxo-10-hydroxycarminomycin hydrochloride. To investigate the mechanisms of resistance to MX2, we established an MX2-resistant phenotype (K562/MX2) of the human myelogeneous leukaemia cell line (K562/P), by continuously exposing a suspension culture to increasing concentrations of MX2. K562/MX2 cells were more resistant to MX2 than the parent cells, and also showed cross-resistance to etoposide and doxorubicin. Topoisomerase (Topo) IIα protein levels in K562/MX2 cells were lower of those in K562/P cells on immunoblot analysis and decreased expression of Topo IIα mRNA was seen in K562/MX2 cells. Topoisomerase II catalytic activity was also reduced in the nuclear extracts from K562/MX2 cells when compared with K562/P cells. Aberrant methylated CpG of Topo IIα gene was observed in K562/MX2 cells when compared with the parent line on methylation-specific restriction enzyme analysis. To overcome the drug resistance to MX2 and etoposide, we investigated treatment with 5-Aza-2′-deoxycytidine (5AZ), which is a demethylating agent, in K562/MX2 cells. 5-Aza-2′-deoxycytidine treatment increased Topo IIα mRNA expression in K562/MX2 cells, but not in K562/P cells, and increased the cytotoxicity of MX2 and etoposide. Methylated CpG was decreased in K562/MX2 cells after 5AZ treatment. We concluded that the mechanism of drug resistance to MX2 and etoposide in K562/MX2 cells might be the combination of decreased expression of Topo IIα gene and increased methylation, and that 5AZ could prove to be a novel treatment for etoposide-resistant cell lines, such as K562/MX2

    The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats

    Get PDF
    To study the role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 6), a group in which LPS administration was followed by immediate fluid resuscitation which prevented the drop of renal blood flow (EARLY group) (n = 6), and a group in which LPS administration was followed by delayed (i.e., a 2-h delay) fluid resuscitation (LATE group) (n = 6). Renal blood flow was measured using a transit-time ultrasound flow probe. Microvascular perfusion and oxygenation distributions in the renal cortex were assessed using laser speckle imaging and phosphorimetry, respectively. Interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α were measured as markers of systemic inflammation. Furthermore, renal tissue samples were stained for leukocyte infiltration and inducible nitric oxide synthase (iNOS) expression in the kidney. LPS infusion worsened both microvascular perfusion and oxygenation distributions. Fluid resuscitation improved perfusion histograms but not oxygenation histograms. Improvement of microvascular perfusion was more pronounced in the EARLY group compared with the LATE group. Serum cytokine levels decreased in the resuscitated groups, with no difference between the EARLY and LATE groups. However, iNOS expression and leukocyte infiltration in glomeruli were lower in the EARLY group compared with the LATE group. In our model, prevention of endotoxemia-induced systemic hypotension by immediate fluid resuscitation (EARLY group) did not prevent systemic inflammatory activation (IL-6, IL-10, TNF-α) but did reduce renal inflammation (iNOS expression and glomerular leukocyte infiltration). However, it could not prevent reduced renal microvascular oxygenatio

    Frequency and severity of myocardial perfusion abnormalities using Tc-99m MIBI SPECT in cardiac syndrome X

    Get PDF
    BACKGROUND: Cardiac syndrome X is defined by a typical angina pectoris with normal or near normal (stenosis <40%) coronary angiogram with or without electrocardiogram (ECG) change or atypical angina pectoris with normal or near normal coronary angiogram plus a positive none-invasive test (exercise tolerance test or myocardial perfusion scan) with or without ECG change. Studies with myocardial perfusion imaging on this syndrome have indicated some abnormal perfusion scan. We evaluated the role of myocardial perfusion imaging (MPI) and also the severity and extent of perfusion abnormality using Tc-99m MIBI Single Photon Emission Computed Tomography (SPECT) in these patients. METHODS: The study group consisted of 36 patients with cardiac syndrome X. The semiquantitative perfusion analysis was performed using exercise Tc-99m MIBI SPECT. The MPI results were analyzed by the number, location and severity of perfusion defects. RESULTS: Abnormal perfusion defects were detected in 13 (36.10%) cases, while the remaining 23 (63.90%) had normal cardiac imaging. Five of 13 (38.4%) abnormal studies showed multiple perfusion defects. The defects were localized in the apex in 3, apical segments in 4, midventricular segments in 12 and basal segments in 6 cases. Fourteen (56%) of all abnormal segments revealed mild, 7(28%) moderate and 4 (16%) severe reduction of tracer uptake. No fixed defects were identified. The vessel territories were approximately the same in all subjects. The Exercise treadmill test (ETT) was positive in 25(69%) and negative in 11(30%) patients. There was no consistent pattern as related to the extent of MPI defects or exercise test results. CONCLUSION: Our study suggests that multiple perfusion abnormalities with different levels of severity are common in cardiac syndrome X, with more than 30 % of these patients having at least one abnormal perfusion segment. Our findings suggest that in these patients microvascular angina is probably more common than is generally believed

    Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo

    Get PDF
    Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA. Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs were studied. Separate groups of 12 animals were killed at age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids. Results: Severity of OA increased progressively in guinea pigs with age. Glycated, oxidized, and nitrated amino acids were increased markedly at week 36, with glucosepane and dityrosine increasing progressively from weeks 20 and 28, respectively. Glucosepane correlated positively with OA histological severity (r = 0.58, p < 0.0001) and instantaneous modulus (r = 0.52–0.56; p < 0.0001), oxidation free adducts correlated positively with OA severity (p < 0.0009–0.0062), and hydroxyproline correlated positively with cartilage thickness (p < 0.0003–0.003). Interleukin-1β increased the release of glycated and nitrated amino acids from chondrocytes in vitro. In clinical translation, plasma glucosepane was increased 38% in early-stage OA (p < 0.05) and sixfold in patients with advanced OA (p < 0.001) compared with healthy controls. Conclusions: These studies further advance the prospective role of glycated, oxidized, and nitrated amino acids as serum biomarkers in diagnostic algorithms for early-stage detection of OA and other arthritic disease. Plasma glucosepane, reported here for the first time to our knowledge, may improve early-stage diagnosis and progression of clinical OA

    Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, <it>i.e</it>. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (<it>Cichorium intybus </it>L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae.</p> <p>Findings</p> <p>Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from <it>Hin</it>dIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and <it>S</it><sub>2</sub><it>S</it><sub>2 </sub>for the <it>S</it>-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and <it>S</it><sub>1</sub><it>S</it><sub>4</sub>. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers.</p> <p>Conclusions</p> <p>This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the <it>S</it>-locus in this Asteraceae species.</p

    GEF-H1 Mediated Control of NOD1 Dependent NF-κB Activation by Shigella Effectors

    Get PDF
    Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    PRALIMAP: study protocol for a high school-based, factorial cluster randomised interventional trial of three overweight and obesity prevention strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the increase in overweight and obesity prevalence in adolescents in the last decade, effective prevention strategies for these conditions in adolescents are urgently needed. The PRALIMAP (Promotion de l'ALImentation et de l'Activité Physique) trial aims to evaluate the effectiveness for these conditions of 3 health promotion strategies -- educational, screening and environmental -- applied singly or in combination in high schools over a 2-year intervention period.</p> <p>Methods</p> <p>PRALIMAP is a stratified 2 × 2 × 2 factorial cluster randomised controlled trial including 24 state high schools in Lorraine, northeastern France, in 2 waves: 8 schools in 2006 (wave 1) and 16 in 2007 (wave 2). Students entering the selected high schools in the 4 academic years from 2006 to 2009 are eligible for data collection. Interventional strategies are organized over 2 academic years. The follow-up consists of 3 visits: at the entry of grade 10 (T0), grade 11 (T1) and grade 12 (T2). At T0, 5,458 (85.7%) adolescents participated. The educational strategy consists of nutritional lessons, working groups and a final party. The screening strategy consists in detecting overweight/obesity and eating disorders in adolescents and proposing, if necessary, an adapted care management program of 7 group educational sessions. The environmental strategy consists in improving dietary and physical activity offerings in high schools and facilities, especially catering. The main outcomes are body size evolution over time, nutritional behaviour and knowledge, health and quality of life. An evaluation process documents how each intervention strategy is implemented in the schools and estimates the dose of the intervention, allowing for a per protocol analysis after the main intention-to-treat analysis.</p> <p>Discussion</p> <p>PRALIMAP aims at improving the prevention and management of overweight and obesity in adolescents by translating current evidence into public health practice. Particular attention is paid to clustering, multiple factorials and long-term duration to address common pitfalls in health promotion trials. The results should inform how best to implement, in a school environment, effective nutrition prevention programs targeting adolescents who are at a point their lives when they develop responsibilities and empowerment for health attitude behaviours.</p> <p>Trial registration</p> <p>This trial is registered at ClinicalTrials.gov under <a href="http://clinicaltrials.gov/ct2/show/NCT00814554">NCT00814554</a>.</p
    corecore