346 research outputs found
Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver
Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector
Background: As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings: The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. J 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6 % and 39 % higher costs respectively
Large N and Bosonization in Three Dimensions
Bosonization is normally thought of as a purely two-dimensional phenomenon,
and generic field theories with fermions in D>2 are not expected be describable
by local bosonic actions, except in some special cases. We point out that 3D
SU(N) gauge theories on R^{1,1} x S^{1}_{L} with adjoint fermions can be
bosonized in the large N limit. The key feature of such theories is that they
enjoy large N volume independence for arbitrary circle size L. A consequence of
this is a large N equivalence between these 3D gauge theories and certain 2D
gauge theories, which matches a set of correlation functions in the 3D theories
to corresponding observables in the 2D theories. As an example, we focus on a
3D SU(N) gauge theory with one flavor of adjoint Majorana fermions and derive
the large-N equivalent 2D gauge theory. The extra dimension is encoded in the
color degrees of freedom of the 2D theory. We then apply the technique of
non-Abelian bosonization to the 2D theory to obtain an equivalent local theory
written purely in terms of bosonic variables. Hence the bosonized version of
the large N three-dimensional theory turns out to live in two dimensions.Comment: 30 pages, 2 tables. v2 minor revisions, references adde
Bisphenol A-Mediated Suppression of LPL Gene Expression Inhibits Triglyceride Accumulation during Adipogenic Differentiation of Human Adult Stem Cells
The endocrine disrupting chemical, bisphenol A (BPA), has been shown to accelerate the rate of adipogenesis and increase the amount of triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. The objective of this study was to investigate if that observation is mirrored in human primary cells. Here we investigated the effect of BPA on adipogenesis in cultured human primary adult stem cells. Continuous exposure to BPA throughout the 14 days of differentiation dramatically reduced triglyceride accumulation and suppressed gene transcription of the lipogenic enzyme, lipoprotein lipase (LPL). Results presented in the present study show for the first time that BPA can reduce triglyceride accumulation during adipogenesis by attenuating the expression of LPL gene transcription. Also, by employing image cytometric analysis rather than conventional Oil red O staining techniques we show that BPA regulates triglyceride accumulation in a manner which does not appear to effect adipogenesis per se
MIQuant – Semi-Automation of Infarct Size Assessment in Models of Cardiac Ischemic Injury
BACKGROUND: The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application. METHODOLOGY/PRINCIPAL FINDINGS: Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r(midline length) = 0.981; r(area) = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement. CONCLUSIONS: We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies
Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E
Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection
Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication
Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene—or gene circuit function—that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ~7 weeks
- …