490 research outputs found

    Excising das All: Evolving Maxwell waves beyond scri

    Get PDF
    We study the numerical propagation of waves through future null infinity in a conformally compactified spacetime. We introduce an artificial cosmological constant, which allows us some control over the causal structure near null infinity. We exploit this freedom to ensure that all light cones are tilted outward in a region near null infinity, which allows us to impose excision-style boundary conditions in our finite difference code. In this preliminary study we consider electromagnetic waves propagating in a static, conformally compactified spacetime.Comment: 13 pages; incorporated material from gr-qc/051216

    System Design for a Long-Line Quantum Repeater

    Full text link
    We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distributed quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.Comment: 12 pages, 13 figures. v2 includes one new graph, modest corrections to some others, and significantly improved presentation. to appear in IEEE/ACM Transactions on Networkin

    On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

    Full text link
    We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any Ω(logn)\Omega(\log n)-depth quantum adder circuit for two nn-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen kk-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer Ω(logn)\Omega(\log {n}), but Ω(nk)\Omega(\sqrt[k]{n}). This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing System

    A high bandwidth quantum repeater

    Full text link
    We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.Comment: 5 page

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Binary black hole merger dynamics and waveforms

    Get PDF
    We study dynamics and radiation generation in the last few orbits and merger of a binary black hole system, applying recently developed techniques for simulations of moving black holes. Our analysis of the gravitational radiation waveforms and dynamical black hole trajectories produces a consistent picture for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of one percent among the simulations for the last orbit, merger and ringdown. We are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. The simulations result in a final black hole with spin parameter a/m=0.69. We also find good agreement at a level of roughly 10 percent for the radiation generated in the preceding few orbits.Comment: 11 pages, 11 figures, submitted to PRD, update citations, minor change

    Quantum Repeater with Encoding

    Get PDF
    We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection. We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.Comment: 11 pages, 5 figures (add new section III with an explicit example and new appendix A
    corecore