142 research outputs found

    Integrating Science and Policy Through Stakeholder-Engaged Scenarios

    Get PDF
    Scenario development for integrated analysis focuses on adopting an interdisciplinary approach covering key elements of the biophysical environment as well as changes in livelihoods, education, economics and governance both locally and internationally. Most importantly, the development of these scenarios generates a dialogue across institutions, stakeholders and sectors, with the use of common data and agreement on shared qualitative and quantitative futures. The scenarios adopted combine three alternative future climates and three socio-economic development pathways. Quantification of these issues included estimation based on published data, expert knowledge and stakeholder engagement, particularly where data are most uncertain or unknown. This chapter demonstrates this approach for coastal Bangladesh

    Participatory analysis for adaptation to climate change in Mediterranean agricultural systems: possible choices in process design (versão Pre Print)

    Get PDF
    There is an increasing call for local measures to adapt to climate change, based on foresight analyses in collaboration with actors. However, such analyses involve many challenges, particularly because the actors concerned may not consider climate change to be an urgent concern. This paper examines the methodological choices made by three research teams in the design and implementation of participatory foresight analyses to explore agricultural and water management options for adaptation to climate change. Case studies were conducted in coastal areas of France, Morocco, and Portugal where the groundwater is intensively used for irrigation, the aquifers are at risk or are currently overexploited, and a serious agricultural crisis is underway. When designing the participatory processes, the researchers had to address four main issues: whether to avoid or prepare dialogue between actors whose relations may be limited or tense; how to select participants and get them involved; how to facilitate discussion of issues that the actors may not initially consider to be of great concern; and finally, how to design and use scenarios. In each case, most of the invited actors responded and met to discuss and evaluate a series of scenarios. Strategies were discussed at different levels, from farming practices to aquifer management. It was shown that such participatory analyses can be implemented in situations which may initially appear to be unfavourable. This was made possible by the flexibility in the methodological choices, in particular the possibility of framing the climate change issue in a broader agenda for discussion with the actors

    Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe

    Get PDF
    Climate change will affect all sectors of society and the environment at all scales, ranging from the continental to the national and local. Decision-makers and other interested citizens need to be able to access reliable science-based information to help them respond to the risks of climate change impacts and assess opportunities for adaptation. Participatory integrated assessment (IA) tools combine knowledge from diverse scientific disciplines, take account of the value and importance of stakeholder ‘lay insight’ and facilitate a two-way iterative process of exploration of ‘what if’s’ to enable decision-makers to test ideas and improve their understanding of the complex issues surrounding adaptation to climate change. This paper describes the conceptual design of a participatory IA tool, the CLIMSAVE IA Platform, based on a professionally facilitated stakeholder engagement process. The CLIMSAVE (climate change integrated methodology for cross-sectoral adaptation and vulnerability in Europe) Platform is a user-friendly, interactive web-based tool that allows stakeholders to assess climate change impacts and vulnerabilities for a range of sectors, including agriculture, forests, biodiversity, coasts, water resources and urban development. The linking of models for the different sectors enables stakeholders to see how their interactions could affect European landscape change. The relationship between choice, uncertainty and constraints is a key cross-cutting theme in the conduct of past participatory IA. Integrating scenario development processes with an interactive modelling platform is shown to allow the exploration of future uncertainty as a structural feature of such complex problems, encouraging stakeholders to explore adaptation choices within real-world constraints of future resource availability and environmental and institutional capacities, rather than seeking the ‘right’ answers

    Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments

    Get PDF
    International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers

    Climate change impact modelling needs to include cross-sectoral interactions

    Get PDF
    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale
    • …
    corecore