486 research outputs found

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    Cell-Specific Monitoring of Protein Synthesis In Vivo

    Get PDF
    Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems

    Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Get PDF
    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour

    The Pediatric Choroidal and Ciliary Body Melanoma Study A Survey by the European Ophthalmic Oncology Group

    Get PDF
    Purpose: To collect comprehensive data on choroidal and ciliary body melanoma (CCBM) in children and to validate hypotheses regarding pediatric CCBM: children younger than 18 years, males, and those without ciliary body involvement (CBI) have more favorable survival prognosis than young adults 18 to 24 years of age, females, and those with CBI. Design: Retrospective, multicenter observational study. Participants: Two hundred ninety-nine patients from 24 ocular oncology centers, of whom 114 were children (median age, 15.1 years; range, 2.7-17.9 years) and 185 were young adults. Methods: Data were entered through a secure website and were reviewed centrally. Survival was analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. Main Outcome Measures: Proportion of females, tumor-node-metastasis (TNM) stage, cell type, and melanoma-related mortality. Results: Cumulative frequency of having CCBM diagnosed increased steadily by 0.8% per year of age between 5 and 10 years of age and, after a 6-year transition period, by 8.8% per year from age 17 years onward. Of children and young adults, 57% and 63% were female, respectively, which exceeded the expected 51% among young adults. Cell type, known for 35% of tumors, and TNM stage (I in 22% and 21%, II in 49% and 52%, III in 30% and 28%, respectively) were comparable for children and young adults. Melanoma-related survival was 97% and 90% at 5 years and 92% and 80% at 10 years for children compared with young adults, respectively (P = 0.013). Males tended to have a more favorable survival than females among children (100% vs. 85% at 10 years; P = 0.058). Increasing TNM stage was associated with poorer survival (stages I, II, and III: 100% vs. 86% vs. 76%, respectively; P = 0.0011). By multivariate analysis, being a young adult (adjusted hazard rate [HR], 2.57), a higher TNM stage (HR, 2.88 and 8.38 for stages II and III, respectively), and female gender (HR, 2.38) independently predicted less favorable survival. Ciliary body involvement and cell type were not associated with survival. Conclusions: This study confirms that children with CCBM have a more favorable survival than young adults 18 to 25 years of age, adjusting for TNM stage and gender. The association between gender and survival varies between age groups. (C) 2016 by the American Academy of Ophthalmology.Peer reviewe

    Antiglucocorticoid RU38486 reduces net protein catabolism in experimental acute renal failure

    Get PDF
    BACKGROUND: In acute renal failure, a pronounced net protein catabolism occurs that has long been associated with corticoid action. By competitively blocking the glucocorticoid receptor with the potent antiglucocorticoid RU 38486, the present study addressed the question to what extent does corticoid action specific to uremia cause the observed muscle degradation, and does inhibition of glucocorticoid action reduce the protein wasting? METHODS: RU 38486 was administered in a dose of 50 mg/kg/24 h for 48 h after operation to fasted bilaterally nephrectomized (BNX) male adult Wistar rats and sham operated (SHAM) controls. Protein turnover was evaluated by high performance liquid chromatography (HPLC) of amino acid efflux in sera from isolated perfused hindquarters of animals treated with RU 38486 versus untreated controls. RESULTS: Administration of RU 38486 reduces the total amino acid efflux (TAAE) by 18.6% in SHAM and 15.6% in BNX and efflux of the indicator of net protein turnover, phenylalanine (Phe) by 33.3% in SHAM and 13% in BNX animals as compared to the equally operated, but untreated animals. However, the significantly higher protein degradation observed in BNX (0.6 ± 0.2 nmol/min/g muscle) versus SHAM (0.2 ± 0.1 nmol/min/g muscle) rats, as demonstrated by the marker of myofribrillar proteolytic rate, 3-Methylhistidine (3 MH) remains unaffected by administration of RU 38486 (0.5 ± 0.1 v. 0.2 ± 0.1 nmol/min/g muscle in BNX v. SHAM). CONCLUSION: RU 38486 does not act on changes of muscular protein turnover specific to uremia but reduces the effect of stress- stimulated elevated corticosterone secretion arising from surgery and fasting. A potentially beneficial effect against stress- induced catabolism in severe illness can be postulated that merits further study

    Symplasmic transport and phloem loading in gymnosperm leaves

    Get PDF
    Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms
    corecore