64 research outputs found
Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung
Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg-1). Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b were unchanged. Increased p27Ki
Inflammation Aggravates Disease Severity in Marfan Syndrome Patients
BACKGROUND: Marfan syndrome (MFS) is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-beta signaling. However, the contribution of tissue inflammation is not addressed so far. METHODOLOGY/PRINCIPAL FINDINGS: Here we showed that both TGF-beta and inflammation are up-regulated in patients with MFS. We analyzed transcriptome-wide gene expression in 55 MFS patients using Affymetrix Human Exon 1.0 ST Array and levels of TGF-beta and various cytokines in their plasma. Within our MFS population, increased plasma levels of TGF-beta were found especially in MFS patients with aortic root dilatation (124 pg/ml), when compared to MFS patients with normal aorta (10 pg/ml; p = 8x10(-6), 95% CI: 70-159 pg/ml). Interestingly, our microarray data show that increased expression of inflammatory genes was associated with major clinical features within the MFS patients group; namely severity of the aortic root dilatation (HLA-DRB1 and HLA-DRB5 genes; r = 0.56 for both; False Discovery Rate(FDR) = 0%), ocular lens dislocation (RAET1L, CCL19 and HLA-DQB2; Fold Change (FC) = 1.8; 1.4; 1.5, FDR = 0%) and specific skeletal features (HLA-DRB1, HLA-DRB5, GZMK; FC = 8.8, 7.1, 1.3; FDR = 0%). Patients with progressive aortic disease had higher levels of Macrophage Colony Stimulating Factor (M-CSF) in blood. When comparing MFS aortic root vessel wall with non-MFS aortic root, increased numbers of CD4+ T-cells were found in the media (p = 0.02) and increased number of CD8+ T-cells (p = 0.003) in the adventitia of the MFS patients. CONCLUSION/SIGNIFICANCE: In conclusion, our results imply a modifying role of inflammation in MFS. Inflammation might be a novel therapeutic target in these patients
A multidisciplinary consensus on the morphological and functional responses to immunotherapy treatment
The implementation of immunotherapy has radically changed the treatment of oncological patients. Currently, immunotherapy is indicated in the treatment of patients with head and neck tumors, melanoma, lung cancer, bladder tumors, colon cancer, cervical cancer, breast cancer, Merkel cell carcinoma, liver cancer, leukemia and lymphomas. However, its efficacy is restricted to a limited number of cases. The challenge is, therefore, to identify which subset of patients would benefit from immunotherapy. To this end, the establishment of immunotherapy response criteria and predictive and prognostic biomarkers is of paramount interest. In this report, a group of experts of the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) provide an up-to-date review and a consensus guide on these issues
BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways
The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leave
Evaluation of simultaneous multi-slice acquisition with advanced processing for free-breathing diffusion-weighted imaging in patients with liver metastasis.
OBJECTIVES: Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) acquisition and advanced processing can accelerate acquisition time and improve MR image quality. This study evaluated the image quality and apparent diffusion coefficient (ADC) measurements of free-breathing DWI acquired from patients with liver metastases using a prototype SMS-DWI acquisition (with/without an advanced processing option) and conventional DWI. METHODS: Four DWI schemes were compared in a pilot 5-patient cohort; three DWI schemes were further assessed in a 24-patient cohort. Two readers scored image quality of all b-value images and ADC maps across the three methods. ADC measurements were performed, for all three methods, in left and right liver parenchyma, spleen, and liver metastases. The Friedman non-parametric test (post-hoc Wilcoxon test with Bonferroni correction) was used to compare image quality scoring; t-test was used for ADC comparisons. RESULTS: SMS-DWI was faster (by 24%) than conventional DWI. Both readers scored the SMS-DWI with advanced processing as having the best image quality for highest b-value images (b750) and ADC maps; Cohen's kappa inter-reader agreement was 0.6 for b750 image and 0.56 for ADC maps. The prototype SMS-DWI sequence with advanced processing allowed a better visualization of the left lobe of the liver. ADC measured in liver parenchyma, spleen, and liver metastases using the SMS-DWI with advanced processing option showed lower values than those derived from the SMS-DWI method alone (t-test, p < 0.0001; p < 0.0001; p = 0.002). CONCLUSIONS: Free-breathing SMS-DWI with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. CLINICAL RELEVANCE STATEMENT: Free-breathing simultaneous multi-slice- diffusion-weighted imaging (DWI) with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. KEY POINTS: • Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) can accelerate acquisition time and improve image quality. • Apparent diffusion coefficients (ADC) measured in liver parenchyma, spleen, and liver metastases using the simultaneous multi-slice DWI with advanced processing were significantly lower than those derived from the simultaneous multi-slice DWI method alone. • Simultaneous multi-slice DWI sequence with inline advanced processing was faster and demonstrated better image quality in liver patients
- …