6 research outputs found
Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation
Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1a, IL-1b, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase b1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound
Mast Cells and Immunological Skin Diseases
Mast cells play an important role in both adaptive and innate immunity, and a large body of literature demonstrates their functions in skin immunity. This article reviews the literature on the role of this cell type in the pathogenesis of a number of immunological skin diseases, including contact dermatitis, atopic dermatitis, immunobullous disease, scleroderma, and chronic graft-vs.-host disease. In all these diseases, mast cells are noted to increase in number and undergo degranulation in the affected skin, and in some cases, their specific mediators are detected. Elucidation of the contribution of mast cells to the pathogenesis of these diseases has been aided significantly by the use of animal models, especially mouse models. The studies of mast cell-deficient mice in conjunction with normal congenic mice have been particularly fruitful, although in some cases, such as contact dermatitis, a definitive conclusion has not been achieved despite extensive efforts. The role of mast cells in atopic dermatitis has also been suggested by studies of gene polymorphism, which have linked some of the mast cell-related genes to the disease. In the case of scleroderma and chronic graft-vs.-host disease, the function of mast cells in fibrosis is further supported by the ability of these cells and their mediators to induce activation and proliferation of fibroblasts. Therapies targeting mast cells may prove beneficial for treatment of these inflammatory and autoimmune diseases
An Update on Drug-Induced Pigmentation
Drug-induced pigmentation accounts for up to 20% of all cases of acquired pigmentation. A thorough review of medical history and previous and ongoing medications as well as a complete skin examination can guide diagnosis. Implicated agents include alkylating/cytotoxic agents, analgesics, antiarrhythmics, anticoagulants, antiepileptics, antimalarials, antimicrobials, antiretrovirals, metals, prostaglandin analogs, and psychotropic agents, among others. Confirming true drug associations can be challenging, especially in the setting of delayed onset of pigmentation and coexisting polypharmacy