41 research outputs found

    Zeta potential in intact carbonates at reservoir conditions and its impact on oil recovery during controlled salinity waterflooding

    Get PDF
    It is well known that oil recovery from carbonate reservoirs can be increased by modifying the injected brine composition in a process ‘controlled salinity water-flooding’ (CSW). However, the mineral- to pore- scale processes responsible for improved oil recovery (IOR) during CSW remain ambiguous and there is no method to predict the optimum CSW composition for a given crude-oil-brine rock system. Here we report the first integrated experimental measurements of zeta potential and IOR during CSW obtained at reservoir conditions. The zeta potential is a measure of the electrical potential at mineral-brine and oil-brine interfaces and controls the electrostatic forces acting between these interfaces. We find that the measured zeta potential in clean samples saturated with formation brine is typically positive and becomes more negative with brine dilution irrespective of temperature. After aging and wettability alteration, the zeta potential changes and we suggest a more positive zeta potential indicates a positive zeta potential at the oil-brine interface and vice-versa. Injecting low salinity brine yields IOR when the oil-brine zeta potential is identified to be negative, but no response when it is identified to be positive, consistent with the hypothesis that IOR during CSW is caused by an increase in the repulsive electrostatic force acting between mineral-brine and oil-brine interfaces. We suggest that the optimum brine composition for IOR during CSW should be chosen to yield the largest change in zeta potential at the mineral-brine interface with opposing polarity to the oil-brine interface and can be determined using the experimental method reported here

    Follicular thyroid carcinoma invades venous rather than lymphatic vessels

    Get PDF
    Follicular thyroid carcinoma (FTC) tends to metastasize to remote organs rather than local lymph nodes. Separation of FTC from follicular thyroid adenoma (FTA) relies on detection of vascular and/or capsular invasion. We investigated which vascular markers, CD31, CD34 and D2-40 (lymphatic vessel marker), can best evaluate vascular invasion and why FTC tends to metastasize via blood stream to remote organs. Thirty two FTCs and 34 FTAs were retrieved for evaluation. The average age of patients with FTA was 8 years younger than FTC (p = 0.02). The female to male ratio for follicular neoplasm was 25:8. The average size of FTC was larger than FTA (p = 0.003). Fourteen of 32 (44%) FTCs showed venous invasion and none showed lymphatic invasion, with positive CD31 and CD34 staining and negative D2-40 staining of the involved vessels. The average number of involved vessels was 0.88 ± 1.29 with a range from 0 to 5, and the average diameter of involved vessels was 0.068 ± 0.027 mm. None of the 34 FTAs showed vascular invasion. CD31 staining demonstrated more specific staining of vascular endothelial cells than CD34, with less background staining. We recommended using CD31 rather than CD34 and/or D2-40 in confirming/excluding vascular invasion in difficult cases. All identified FTCs with vascular invasions showed involvement of venous channels, rather than lymphatic spaces, suggesting that FTCs prefer to metastasize via veins to distant organs, instead of lymphatic vessels to local lymph nodes, which correlates with previous clinical observations

    Solid Organ Transplantation During COVID-19 Pandemic: An International Web-based Survey on Resources’ Allocation

    Get PDF
    Background. Solid organ transplants (SOTs) are life-saving interventions, recently challenged by coronavirus disease 2019 (COVID-19). SOTs require a multistep process, which can be affected by COVID-19 at several phases. Methods. SOT-specialists, COVID-19-specialists, and medical ethicists designed an international survey according to CHERRIES guidelines. Personal opinions about continuing SOTs, safe managing of donors and recipients, as well as equity of resources' allocation were investigated. The survey was sent by e-mail. Multiple approaches were used (corresponding authors from Scopus, websites of scientific societies, COVID-19 webinars). After the descriptive analysis, univariate and multivariate ordinal regression analysis was performed. Results. There were 1819 complete answers from 71 countries. The response rate was 49%. Data were stratified according to region, macrospecialty, and organ of interest. Answers were analyzed using univariate- multivariate ordinal regression analysis and thematic analysis. Overall, 20% of the responders thought SOTs should not stop (continue transplant without restriction); over 70% suggested SOTs should selectively stop, and almost 10% indicated they should completely stop. Furthermore, 82% agreed to shift resources from transplant to COVID-19 temporarily. Briefly, main reason for not stopping was that if the transplant will not proceed, the organ will be wasted. Focusing on SOT from living donors, 61% stated that activity should be restricted only to "urgent"cases. At the multivariate analysis, factors identified in favor of continuing transplant were Italy, ethicist, partially disagreeing on the equity question, a high number of COVID-19- related deaths on the day of the answer, a high IHDI country. Factors predicting to stop SOTs were Europe except-Italy, public university hospital, and strongly agreeing on the equity question. Conclusions. In conclusion, the majority of responders suggested that transplant activity should be continued through the implementation of isolation measures and the adoption of the COVID-19-free pathways. Differences between professional categories are less strong than supposed

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Relationship between zeta potential and wettability in porous media: insights from a simple bundle of capillary tubes model

    No full text
    Hypothesis & Motivation Experimental data suggest a relationship between the macroscopic zeta potential measured on intact rock samples and the sample wettability. However, there is no pore-scale model to quantify this relationship. Methods We consider the simplest representation of a rock pore space: a bundle of capillary tubes of varying size. Equations describing mass and charge transfer through a single capillary are derived and the macroscopic zeta potential and wettability determined by integrating over capillaries. Model predictions are tested against measured data yielding a good match. Findings Mixed- and oil-wet models return a macro-scale zeta potential that is a combination of the micro-scale zeta potential of mineral-brine and oil-brine interfaces and the relationship between macro-scale zeta potential and water saturation exhibits hysteresis. The model predicts a similar relationship between zeta potential and wettability to that observed in experimental data but does not provide a perfect match. Fitting the model to experimental data allows the oil-brine zeta potential to be estimated at conditions where it cannot be measured directly. Results suggest that positive values of the oil-brine zeta potential may be more common than previously thought with implications for surface complexation models and the design of controlled salinity waterflooding of oil reservoirs
    corecore