635 research outputs found

    Model-based machine learning to identify clinical relevance in a high-resolution simulation of sepsis and trauma

    Get PDF
    Introduction: Sepsis is a devastating, costly, and complicated disease. It represents the summation of varied host immune responses in a clinical and physiological diagnosis. Despite extensive research, there is no current mediator-directed therapy, nor a biomarker panel able to categorize disease severity or reliably predict outcome. Although still distant from direct clinical translation, dynamic computational and mathematical models of acute systemic inflammation and sepsis are being developed. Although computationally intensive to run and calibrate, agent-based models (ABMs) are one type of model well suited for this. New analytical methods to efficiently extract knowledge from ABMs are needed. Specifically, machine-learning techniques are a promising option to augment the model development process such that parameterization and calibration are performed intelligently and efficiently. Methods: We used the Keras framework to train an Artificial Neural Network (ANN) for the purpose of identifying critical biological tipping points at which an in silico patient would heal naturally or require intervention in the Innate Immune Response Agent-Based Model (IIRABM). This ANN, determines simulated patient “survival” from cytokine state based on their overall resilience and the pathogenicity of any active infections experienced by the patient, defined by microbial invasiveness, toxigenesis, and environmental toxicity. These tipping points were gathered from previously generated datasets of simulated sweeps of the 4 IIRABM initializing parameters. Results: Using mean squared error as our loss function, we report an accuracy of greater than 85% with inclusion of 20% of the training set. This accuracy was independently validated on withheld runs. We note that there is some amount of error that is inherent to this process as the determination of the tipping points is a computation which converges monotonically to the true value as a function of the number of stochastic replicates used to determine the point. Conclusion: Our method of regression of these critical points represents an alternative to traditional parameter-sweeping or sensitivity analysis techniques. Essentially, the ANN computes the boundaries of the clinically relevant space as a function of the model’s parameterization, eliminating the need for a brute-force exploration of model parameter space. In doing so, we demonstrate the successful development of this ANN which will allows for an efficient exploration of model parameter space

    Model iterative airway pressure reconstruction during mechanical ventilation asynchrony: shapes and sizes of reconstruction

    Get PDF
    Model-based methods estimating patient-specific respiratory mechanics may help intensive care clinicians in setting optimal ventilation parameters. However, these methods rely heavily on the quality of measured airway pressure and flow profiles for reliable respiratory mechanics estimation. Thus, asynchronous and/or spontaneous breathing cycles that do not follow a typical passive airway profile affect the performance and reliability of model-based methods. In this study, a model iterative airway pressure reconstruction method is presented. It aims to reconstruct a measured airway pressure affected by asynchronous breathing iteratively, trying to match the profile of passive breaths with no asynchrony or spontaneous breathing effort. Thus, reducing the variability of identified respiratory mechanics over short time periods where changes would be due only to asynchrony or spontaneous artefacts. A total of 2000 breathing cycles from mechanically ventilated patients with known asynchronous breathing were analyzed. It was found that this method is capable of reconstructing an airway pressure free from asynchronous or spontaneous breathing effort. This work focuses on several cases, detailing how iterative pressure reconstruction method performs under different cases, as well as its limitation

    The impact of population heterogeneity on risk estimation in genetic counseling

    Get PDF
    BACKGROUND: Genetic counseling has been an important tool for evaluating and communicating disease susceptibility for decades, and it has been applied to predict risks for a wide class of hereditary disorders. Most diseases are complex in nature and are affected by multiple genes and environmental conditions; it is highly likely that DNA tests alone do not define all the genetic factors responsible for a disease, so that persons classified into the same risk group by DNA testing actually could have different disease susceptibilities. Ignorance of population heterogeneity may lead to biased risk estimates, whereas additional information on population heterogeneity may improve the precision of such estimates. METHODS: Although DNA tests are widely used, few studies have investigated the accuracy of the predicted risks. We examined the impact of population heterogeneity on predicted disease risks by simulation of three different heterogeneity scenarios and studied the precision and accuracy of the risks estimated from a logistic regression model that ignored population heterogeneity. Moreover, we also incorporated information about population heterogeneity into our original model and investigated the resulting improvement in the accuracy of risk estimation. RESULTS: We found that heterogeneity in one or more categories could lead to biased estimates not only in the "contaminated" categories but also in other homogeneous categories. Incorporating information about population heterogeneity into the original model greatly improved the accuracy of risk estimation. CONCLUSIONS: Our findings imply that without thorough knowledge about genetic basis of the disease, risks estimated from DNA tests may be misleading. Caution should be taken when evaluating the predicted risks obtained from genetic counseling. On the other hand, the improved accuracy of risk estimates after incorporating population heterogeneity information into the model did point out a promising direction for genetic counseling, since more and more new techniques are being invented and disease etiology is being better understood

    Efficacy and safety of SPRINT and STAR protocol on Malaysian critically-ill patients

    Get PDF
    Abstract—Intensive care unit patients may have a better glycaemic management with the right control protocol. Results of virtual trial performance on Malaysian critically-ill patients adopting a model-derived and model-based control protocol known as SPRINT and STAR are presented in this paper. These ICU patients have been treated by intensive sliding-scale insulin infusion. The effectiveness and safety of glycaemic control are then analysed. Results showed that patient safety improved by 83% with SPRINT and STAR protocol as the number of hypoglycaemic patients significantly reduced (BG<2.2 mmol/L). Percentage of time within desired bands and median BG improves in both SPRINT and STAR. However the improvements are associated with higher number of BG measurements (workload)

    Mindfulness-based interventions for young offenders: a scoping review

    Get PDF
    Youth offending is a problem worldwide. Young people in the criminal justice system have frequently experienced adverse childhood circumstances, mental health problems, difficulties regulating emotions and poor quality of life. Mindfulness-based interventions can help people manage problems resulting from these experiences, but their usefulness for youth offending populations is not clear. This review evaluated existing evidence for mindfulness-based interventions among such populations. To be included, each study used an intervention with at least one of the three core components of mindfulness-based stress reduction (breath awareness, body awareness, mindful movement) that was delivered to young people in prison or community rehabilitation programs. No restrictions were placed on methods used. Thirteen studies were included: three randomized controlled trials, one controlled trial, three pre-post study designs, three mixed-methods approaches and three qualitative studies. Pooled numbers (n = 842) comprised 99% males aged between 14 and 23. Interventions varied so it was not possible to identify an optimal approach in terms of content, dose or intensity. Studies found some improvement in various measures of mental health, self-regulation, problematic behaviour, substance use, quality of life and criminal propensity. In those studies measuring mindfulness, changes did not reach statistical significance. Qualitative studies reported participants feeling less stressed, better able to concentrate, manage emotions and behaviour, improved social skills and that the interventions were acceptable. Generally low study quality limits the generalizability of these findings. Greater clarity on intervention components and robust mixed-methods evaluation would improve clarity of reporting and better guide future youth offending prevention programs

    Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores

    Get PDF
    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects
    corecore