8 research outputs found

    Characterisation of serum IgG(T) responses to potential diagnostic antigens for equine cyathostominosis

    Get PDF
    Cyathostomins are ubiquitous parasitic nematodes of horses. These worms spend substantial periods as intestinal wall stage encysted larvae, which can comprise up to 90% of the total burden. Several million larvae have been reported in individuals. Emergence of these larvae from the gut wall can lead to life-threatening colitis. Faecal egg count tests, increasingly used by horse owners to inform anthelmintic treatments, do not correlate with the intra-host burden of cyathostomins; this represents a key gap in the diagnostic toolbox. Previously, a cyathostomin Gut Associated Larval Antigen was identified as a promising marker for the intra-host stages of infection. Here, cyathostomin Gut Associated Larval Antigen and an additional protein, Cyathostomin Immuno-diagnostic antigen, were investigated to examine their value in providing information on cyathostomin burden. ELISA analyses examined serum IgG(T) responses to recombinant proteins derived from individual cyathostomin species. Receiver Operator Characteristic curve analysis was performed on the ELISA data; proteins with the highest Area Under the Curve values were selected to test protein combinations to investigate which were the most informative in identifying the infection status of individuals. Three cocktail combinations were tested, comprising: (a) Cy-GALA proteins from two species and a Cy-CID protein from a third species (CT3), (b) Cy-GALA proteins from five species (CT5), and (c) all CT5 components, plus a Cy-CID protein from an additional species (CT6). The best predictive values for infection were obtained using CT3 and CT6, with similar values achieved for both. Proteins in CT3 are derived from the most commonly reported species, Cyathostomum catinatum, Cylicocyclus nassatus and Cylicostephanus longibursatus. This combination was selected for future development since it represents a more commercially viable format for a diagnostic test

    Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection

    Get PDF
    Summary: The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation

    Ovine IgA-reactive proteins from Teladorsagia circumcincta infective larvae

    Get PDF
    AbstractInfection of small ruminants with Teladorsagia circumcincta has, until now, been controlled using a combination of pasture management and frequent anthelmintic treatments. Resistance to the commonly used anthelmintics has driven research into the development of a subunit vaccine, encouraged by the demonstration of development of protective immunity in sheep following exposure to this parasite. Local immune effectors in the abomasum, in particular IgA, are thought to play important roles in naturally- and experimentally-acquired immunity. L3s represent the first contact of this pathogen with the host immune system and, herein, the presence of L3 antigen-specific IgA was demonstrated in abomasal mucus from immune sheep. This antibody source was used to immunoaffinity purify and identify IgA-reactive molecules present in L3s. We identified 155 different proteins in this way, including a number of activation-associated secretory proteins, venom allergen-like-type proteins, detoxifying enzymes, galectins and a suite of other potential vaccine candidate molecules. Levels of immunoaffinity-enriched L3 antigen-specific IgA in gastric lymph from previously-infected sheep were statistically significantly higher (P=0.004) than those measured in helminth-free sheep and a statistically significant negative correlation (P=0.005, rs=−0.565) was identified between immunoaffinity-enriched L3 antigen-specific IgA levels in efferent gastric lymph and total T. circumcincta burden measured at necropsy. In addition, a statistically significant positive correlation (P=0.007, rs=0.534) was measured between immunoaffinity-enriched L3 antigen-specific IgA levels in efferent gastric lymph and the percentage of inhibited L4s enumerated at necropsy. These results indicate that the purified antigens contain components that could be strongly considered as vaccine candidates

    Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections

    No full text
    Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these “paralyzed” DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-ÎČ. Paralyzed DCs secreted TGF-ÎČ and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention. Following a severe primary infection, the risk of developing pneumonia increases due to acquired immune defects collectively known as sepsis-induced immunosuppression. Roquilly et al. show that resolution of the primary infection changed the local environment, leading to the development of DCs and macrophages that are functionally impaired in terms of T cell activation, and instead exhibit tolerogenic properties that contribute to immune suppression

    Virus-mediated suppression of the antigen presentation molecule MR1

    Get PDF
    The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.The antigen-presenting molecule MR1 presents bacterial and fungal metabolites to MAIT cells. McSharry et al. show that the herpesviruses HSV-1 and CMV disrupt MR1 expression. Downregulation of MR1 by HSV-1 inhibits bacterially driven MAIT TCR-dependent activation. This provides evidence of virus immunomodulatory control of the MR1-restricted immune response

    A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells

    No full text
    International audienceMR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B–related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system

    Sepsis-trained macrophages promote antitumoral tissue-resident T cells

    No full text
    International audienceSepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity
    corecore