2,470 research outputs found

    En route position and time control of aircraft using Kalman filtering of radio aid data

    Get PDF
    Fixed-time-of-arrival (FTA) guidance and navigation is investigated as a possible technique capable of operation within much more stringent en route separation standards and offering significant advantages in safety, higher traffic densities, and improved scheduling reliability, both en route and in the terminal areas. This study investigated the application of FTA guidance previously used in spacecraft guidance. These FTA guidance techniques have been modified and are employed to compute the velocity corrections necessary to return an aircraft to a specified great-circle reference path in order to exercise en route time and position control throughout the entire flight. The necessary position and velocity estimates to accomplish this task are provided by Kalman filtering of data from Loran-C, VORTAC/TACAN, Doppler radar, radio or barometric altitude,and altitude rate. The guidance and navigation system was evaluated using a digital simulation of the cruise phase of supersonic and subsonic flights between San Francisco and New York City, and between New York City and London

    Evaluation of thermal insulation materials

    Get PDF
    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting

    A system for synthetic vision and augmented reality in future flight decks

    Get PDF
    Rockwell Science Center is investigating novel human-computer interaction techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays that provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information. Orientation of the camera is obtained from an inclinometer and a magnetometer; position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual cues with database features. This technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background with an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer

    Just picking it up? Young children learning with technology at home

    Get PDF
    We describe a two-year empirical investigation of three- and four-year-old children's uses of technology at home, based on a survey of 346 families and 24 case studies. Using a sociocultural approach, we discuss the range of technologies children encounter in the home, the different forms their learning takes, the roles of adults and other children, and how family practices support this learning. Many parents believed that they do not teach children how to use technology. We discuss parents' beliefs that their children 'pick up' their competences with technology and identify trial and error, copying and demonstration as typical modes of learning. Parents tend to consider that their children are mainly self-taught and underestimate their own role in supporting learning and the extent to which learning with technology is culturally transmitted within the family

    The Effectiveness of a Geriatrics Curriculum

    Get PDF
    With support from the AAMC/John A. Hartford Foundation the University of Massachusetts Medical School developed a Geriatrics curriculum and faculty development that would be integrated across all four years. Beginning in Fall 2001, these were implemented over the next two academic years in both preclinical and clinical areas and are highlighted on the timeline above. Would implementation of this new Geriatrics curriculum and faculty development impact students’ ratings of instruction time in Geriatrics? Presented at the AAMC (Association of American Colleges) Annual Meeting, RIME (Research in Medical Education) Program, November 2005

    Structure of the Large Magellanic Cloud from 2MASS

    Get PDF
    We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that \sigma_M\simlt 0.2^m for this color cut. The sample provides a {\it direct} determination of the LMC disk inclination: 42.3∘±7.2∘42.3^\circ\pm 7.2^\circ. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.Comment: 24 pages, 9 figures. Submitted to Ap

    Comparison of high-latitude line-of-sight ozone column density with derived ozone fields and the effects of horizontal inhomogeneity

    No full text
    International audienceExtensive ozone measurements were made during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). We compare high-latitude line-of-sight (LOS) slant column ozone measurements from the NASA DC-8 to ozone simulated by forward integration of measurement-derived ozone fields constructed both with and without the assumption of horizontal homogeneity. The average bias and rms error of the simulations assuming homogeneity are relatively small (?6 and 10%, respectively) in comparison to the LOS measurements. The comparison improves significantly (?2% bias; 8% rms error) using forward integrations of three-dimensional proxy ozone fields reconstructed from potential vorticity-O3 correlations. The comparisons provide additional verification of the proxy fields and quantify the influence of large-scale ozone inhomogeneity. The spatial inhomogeneity of the atmosphere is a source of error in the retrieval of trace gas vertical profiles and column abundance from LOS measurements, as well as a complicating factor in intercomparisons that include LOS measurements at large solar zenith angles

    Superbubble evolution including the star-forming clouds: Is it possible to reconcile LMC observations with model predictions?

    Get PDF
    Here we present a possible solution to the apparent discrepancy between the observed properties of LMC bubbles and the standard, constant density bubble model. A two-dimensional model of a wind-driven bubble expanding from a flattened giant molecular cloud is examined. We conclude that the expansion velocities derived from spherically symmetric models are not always applicable to elongated young bubbles seen almost face-on due to the LMC orientation. In addition, an observational test to differentiate between spherical and elongated bubbles seen face-on is discussed.Comment: 25 pages, 7 figures, accepted to ApJ (September, 1999 issue
    • 

    corecore