400 research outputs found

    Chronic musculoskeletal pain predicted hospitalisation due to serious medical conditions in a 10 year follow up study

    Get PDF
    BACKGROUND: The aim was to examine if self reported chronic regional pain (CRP) and chronic widespread pain (CWP) predicted inpatient care due to serious medical conditions such as cerebrovascular diseases, ischemic heart diseases, neoplasms and infectious diseases in a general population cohort over a ten year follow-up period.METHODS: A ten-year follow up of a cohort from the general adult population in two health care districts with mixed urban and rural population in the south of Sweden, that in 1995 participated in a survey on health and musculoskeletal pain experience. Information on hospitalisation for each subject was taken from the regional health care register. Multiple logistic regression analyses were used to study the associations between chronic musculoskeletal pain and different medical conditions as causes of hospitalisation.RESULTS: A report of CRP (OR = 1.6; p < 0.001) or CWP ( OR = 2.1; p < 0.001) predicted at least one episode of inpatient care over a ten year period, with an increased risk in almost all diagnostic subgroups, including cerebrovascular diseases, ischemic heart diseases, and infectious diseases. There was however no increased risk of hospitalisation due to neoplasms.CONCLUSIONS: The presence of especially CWP was associated with hospital inpatient care due to several serious medical disorders. This may imply a general vulnerability to different medical conditions that has to be addressed in the assessment and management of subjects with chronic musculoskeletal pain

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China.

    Get PDF
    Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages

    Selection of Resistant Bacteria at Very Low Antibiotic Concentrations

    Get PDF
    The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations

    The Interaction of Canine Plasminogen with Streptococcus pyogenes Enolase: They Bind to One Another but What Is the Nature of the Structures Involved?

    Get PDF
    For years it has been clear that plasminogen from different sources and enolase from different sources interact strongly. What is less clear is the nature of the structures required for them to interact. This work examines the interaction between canine plasminogen (dPgn) and Streptococcus pyogenes enolase (Str enolase) using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), fluorescence polarization, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and simple pull-down reactions. Overall, our data indicate that a non-native structure of the octameric Str enolase (monomers or multimers) is an important determinant of its surface-mediated interaction with host plasminogen. Interestingly, a non-native structure of plasminogen is capable of interacting with native enolase. As far as we can tell, the native structures resist forming stable mixed complexes

    Molecular Characterization of Clinical Isolates of Aeromonas Species from Malaysia

    Get PDF
    Background: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity. Methodology/Principal Findings: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%). Conclusions/Significance: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 9
    • …
    corecore