51 research outputs found

    Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti- hepatocarcinogenic effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized poly-herbal decoction of <it>Nigella sativa </it>seeds, <it>Hemidesmus indicus </it>roots and <it>Smilax glabra </it>rhizomes used traditionally in Sri Lanka for cancer therapy has been demonstrated previously, to have anti-hepatocarcinogenic potential. Cytotoxicity, antioxidant activity, anti-inflammatory activity, and up regulation of p53 and p21 activities are considered to be some of the possible mechanisms through which the above decoction may mediate its anti-hepatocarcinogenic action. The main aim of the present study was to determine whether apoptosis is also a major mechanism by which the decoction mediates its anti-hepatocarcinogenic action.</p> <p>Methods</p> <p>Evaluation of apoptosis in HepG2 cells was carried out by (a) microscopic observations of cell morphology, (b) DNA fragmentation analysis, (c) activities of caspase 3 and 9, as well as by (d) analysis of the expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins associated with cell death.</p> <p>Results</p> <p>The results demonstrated that in HepG2 cells, the decoction can induce (a) DNA fragmentation and (b) characteristic morphological changes associated with apoptosis (nuclear condensation, membrane blebbing, nuclear fragmentation and apoptotic bodies). The decoction could also, in a time and dose dependent manner, up regulate the expression of the pro-apoptotic gene <it>Bax </it>and down regulate expression of anti-apoptotic <it>Bcl-2 </it>gene (as evident from RT-PCR analysis, immunohistochemistry and western blotting). Further, the decoction significantly (<it>p </it>< .001) enhanced the activities of caspase-3 and caspase-9 in a time and dose dependent manner.</p> <p>Conclusions</p> <p>Overall findings provide confirmatory evidence to demonstrate that the decoction may mediate its reported anti-hepatocarcinogenic effect, at least in part, through modulation of apoptosis.</p

    High-level classification of the Fungi and a tool for evolutionary ecological analyses

    Get PDF
    High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe

    The 2024 Outline of Fungi and fungus-like taxa

    Get PDF
    With the simultaneous growth in interest from the mycological community to discover fungal species and classify them, there is also an important need to assemble all taxonomic information onto common platforms. Fungal classification is facing a rapidly evolving landscape and organizing genera into an appropriate taxonomic hierarchy is central to better structure a unified classification scheme and avoid incorrect taxonomic inferences. With this in mind, the Outlines of Fungi and fungus-like taxa (2020, 2022) were published as an open-source taxonomic scheme to assist mycologists to better understand the taxonomic position of species within the Fungal Kingdom as well as to improve the accuracy and consistency of our taxonomic language. In this paper, the third contribution to the series of Outline of Fungi and fungus-like taxa prepared by the Global Consortium for the Classification of Fungi and fungus-like taxa is published. The former is updated considering our previous reviews and the taxonomic changes based on recent taxonomic work. In addition, it is more comprehensive and derives more input and consensus from a larger number of mycologists worldwide. Apart from listing the position of a particular genus in a taxonomic level, nearly 1000 notes are provided for newly established genera and higher taxa introduced since 2022. The notes section emphasizes on recent findings with corresponding references, discusses background information to support the current taxonomic status and some controversial taxonomic issues are also highlighted. To elicit maximum taxonomic information, notes/taxa are linked to recognized databases such as Index Fungorum, Faces of Fungi, MycoBank and GenBank, Species Fungorum and others. A new feature includes links to Fungalpedia, offering notes in the Compendium of Fungi and fungus-like Organisms. When specific notes are not provided, links are available to webpages and relevant publications for genera or higher taxa to ease data accessibility. Following the recent synonymization of Caulochytriomycota under Chytridiomycota, with Caulochytriomycetes now classified as a class within the latter, based on formally described and currently accepted data, the Fungi comprises 19 Phyla, 83 classes, 1,220 families, 10,685 genera and ca 140,000 species. Of the genera, 39.5% are monotypic and this begs the question whether mycologists split genera unnecessarily or are we going to find other species in these genera as more parts of the world are surveyed? They are 433 speciose genera with more than 50 species. The document also highlights discussion of some important topics including number of genera categorized as incertae sedis status in higher level fungal classification. The number of species at the higher taxonomic level has always been a contentious issue especially when mycologists consider either a lumping or a splitting approach and herein we provide figures. Herein a summary of updates in the outline of Basidiomycota is provided with discussion on whether there are too many genera of Boletales, Ceratobasidiaceae, and speciose genera such as Colletotrichum. Specific case studies deal with Cortinarius, early diverging fungi, Glomeromycota, a diverse early divergent lineage of symbiotic fungi, Eurotiomycetes, marine fungi, Myxomycetes, Phyllosticta, Hymenochaetaceae and Polyporaceae and the longstanding practice of misapplying intercontinental conspecificity. The outline will aid to better stabilize fungal taxonomy and serves as a necessary tool for mycologists and other scientists interested in the classification of the Fungi

    Identification and Pathogenicity of <i>Paramyrothecium</i> Species Associated with Leaf Spot Disease in Northern Thailand

    No full text
    Species of Paramyrothecium that are reported as plant pathogens and cause leaf spot or leaf blight have been reported on many commercial crops worldwide. In 2019, during a survey of fungi causing leaf spots on plants in Chiang Mai and Mae Hong Son provinces, northern Thailand, 16 isolates from 14 host species across nine plant families were collected. A new species Paramyrothecium vignicola sp. nov. was identified based on morphology and concatenated (ITS, cmdA, rpb2, and tub2) phylogeny. Further, P. breviseta and P. foliicola represented novel geographic records to Thailand, while P. eichhorniae represented a novel host record (Psophocarpus sp., Centrosema sp., Aristolochia sp.). These species were confirmed to be the causal agents of the leaf spot disease through pathogenicity assay. Furthermore, cross pathogenicity tests on Coffea arabica L., Commelina benghalensis L., Glycine max (L.) Merr., and Dieffenbachia seguine (Jacq.) Schott revealed multiple host ranges for these pathogens. Further research is required into the host-pathogen relationship of Paramyrothecium species that cause leaf spot and their management. Biotic and abiotic stresses caused by climate change may affect plant health and disease susceptibility. Hence, proper identification and monitoring of fungal communities in the environment are important to understand emerging diseases and for implementation of disease management strategies
    corecore