784 research outputs found

    Lifetime economic impact of the burden of childhood stunting attributable to maternal psychosocial risk factors in 137 low/middle-income countries

    Get PDF
    Introduction: The first 1000 days of life is a period of great potential and vulnerability. In particular, physical growth of children can be affected by the lack of access to basic needs as well as psychosocial factors, such as maternal depression. The objectives of the present study are to: (1) quantify the burden of childhood stunting in low/middle-income countries attributable to psychosocial risk factors; and (2) estimate the related lifetime economic costs. Methods: A comparative risk assessment analysis was performed with data from 137 low/middle-income countries throughout Asia, Latin America and the Caribbean, North Africa and the Middle East, and sub-Saharan Africa. The proportion of stunting prevalence, defined as <-2 SDs from the median height for age according to the WHO Child Growth Standards, and the number of cases attributable to low maternal education, intimate partner violence (IPV), maternal depression and orphanhood were calculated. The joint effect of psychosocial risk factors on stunting was estimated. The economic impact, as reflected in the total future income losses per birth cohort, was examined. Results: Approximately 7.2 million cases of stunting in low/middle-income countries were attributable to psychosocial factors. The leading risk factor was maternal depression with 3.2 million cases attributable. Maternal depression also demonstrated the greatest economic cost at 14.5billion,followedbylowmaternaleducation(14.5 billion, followed by low maternal education (10.0 billion) and IPV (8.5billion).Thejointcostoftheseriskfactorswas8.5 billion). The joint cost of these risk factors was 29.3 billion per birth cohort. Conclusion: The cost of neglecting these psychosocial risk factors is significant. Improving access to formal secondary school education for girls may offset the risk of maternal depression, IPV and orphanhood. Focusing on maternal depression may play a key role in reducing the burden of stunting. Overall, addressing psychosocial factors among perinatal women can have a significant impact on child growth and well-being in the developing world

    Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis

    Get PDF
    The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Unraveling the Phylogenetic Relationships of the Eccoptochilinae, an Enigmatic Array of Ordovician Cheirurid Trilobites

    Get PDF
    The Cheiruridae are a diverse group of trilobites and several subfamilies within the clade have been the focus of recent phylogenetic studies. This paper focuses on the relationships of one of those subfamilies, the Ordovician Eccoptochilinae. We analyze sixteen species from six genera within the traditionally defined group, using the pilekiid Anacheirurus frederici as an outgroup. To assess the monophyly of the Eccoptochilinae seven sphaerexochine species, Kawina arnoldi, Sphaerexochus arenosus, S. atacius, S. latifrons, S. mirus, S. parvus, and S. scabridus were included in the analysis as well. The results of this analysis show that the genus Eccoptochile represents a paraphyletic grade and species traditionally assigned to Parasphaerexochus and Skelipyx plot within Pseudosphaerexochus. Also, representative species of Sphaerexochinae plot within the traditionally defined Eccoptochilinae, suggesting Eccoptochilinae itself is paraphyletic. To resolve this, we propose all species of Pseudosphaerexochus be placed within Sphaerexochinae and Eccoptochilinae be restricted to a monotypic Eccoptochile clavigera.This research was supported by NSF DEB-0716162

    An Allograft Glioma Model Reveals the Dependence of Aquaporin-4 Expression on the Brain Microenvironment

    Get PDF
    Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don’t express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs

    Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    Get PDF
    BACKGROUND. During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. METHODOLOGY/PRINCIPAL FINDINGS. We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68=89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. CONCLUSIONS/SIGNIFICANCE. Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental amniotes. Rather, we hypothesize that these membranes may share an additional unifying characteristic, steroidogenesis, across amniotes at large.Sigma Xi (G20073141634396861); National Science Foundation (2008059161); UF-Howard Hughes G.A.T.O.R. Program; Howard Hughes Medical Institute Professorshi

    Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    Get PDF
    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation

    Get PDF
    Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) and its derivatives exhibit specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. We found that compound 1 would target the parasite adenosine kinase (TbrAK), an important enzyme of the purine salvage pathway, by acting via hyperactivation of the enzyme. This represents a novel and hitherto unexplored strategy for the development of trypanocides. These findings prompted us to investigate the mechanism of action at the molecular level. The present study reports the first three-dimensional crystal structures of TbrAK in complex with the bisubstrate inhibitor AP5A, and in complex with the activator (compound 1). The subsequent structural analysis sheds light on substrate and activator binding, and gives insight into the possible mechanism leading to hyperactivation. Further structure-activity relationships in terms of TbrAK activation properties support the observed binding mode of compound 1 in the crystal structure and may open the field for subsequent optimization of this compound series
    corecore