26 research outputs found

    Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

    Get PDF

    Implementation and Evaluation of the SAEM Algorithm for Longitudinal Ordered Categorical Data with an Illustration in Pharmacokinetics–Pharmacodynamics

    Get PDF
    Analysis of longitudinal ordered categorical efficacy or safety data in clinical trials using mixed models is increasingly performed. However, algorithms available for maximum likelihood estimation using an approximation of the likelihood integral, including LAPLACE approach, may give rise to biased parameter estimates. The SAEM algorithm is an efficient and powerful tool in the analysis of continuous/count mixed models. The aim of this study was to implement and investigate the performance of the SAEM algorithm for longitudinal categorical data. The SAEM algorithm is extended for parameter estimation in ordered categorical mixed models together with an estimation of the Fisher information matrix and the likelihood. We used Monte Carlo simulations using previously published scenarios evaluated with NONMEM. Accuracy and precision in parameter estimation and standard error estimates were assessed in terms of relative bias and root mean square error. This algorithm was illustrated on the simultaneous analysis of pharmacokinetic and discretized efficacy data obtained after a single dose of warfarin in healthy volunteers. The new SAEM algorithm is implemented in MONOLIX 3.1 for discrete mixed models. The analyses show that for parameter estimation, the relative bias is low for both fixed effects and variance components in all models studied. Estimated and empirical standard errors are similar. The warfarin example illustrates how simple and rapid it is to analyze simultaneously continuous and discrete data with MONOLIX 3.1. The SAEM algorithm is extended for analysis of longitudinal categorical data. It provides accurate estimates parameters and standard errors. The estimation is fast and stable

    Application of Item Response Theory to Modeling of Expanded Disability Status Scale in Multiple Sclerosis

    Get PDF
    In this study, we report the development of the first item response theory (IRT) model within a pharmacometrics framework to characterize the disease progression in multiple sclerosis (MS), as measured by Expanded Disability Status Score (EDSS). Data were collected quarterly from a 96-week phase III clinical study by a blinder rater, involving 104,206 item-level observations from 1319 patients with relapsing-remitting MS (RRMS), treated with placebo or cladribine. Observed scores for each EDSS item were modeled describing the probability of a given score as a function of patients' (unobserved) disability using a logistic model. Longitudinal data from placebo arms were used to describe the disease progression over time, and the model was then extended to cladribine arms to characterize the drug effect. Sensitivity with respect to patient disability was calculated as Fisher information for each EDSS item, which were ranked according to the amount of information they contained. The IRT model was able to describe baseline and longitudinal EDSS data on item and total level. The final model suggested that cladribine treatment significantly slows disease-progression rate, with a 20% decrease in disease-progression rate compared to placebo, irrespective of exposure, and effects an additional exposure-dependent reduction in disability progression. Four out of eight items contained 80% of information for the given range of disabilities. This study has illustrated that IRT modeling is specifically suitable for accurate quantification of disease status and description and prediction of disease progression in phase 3 studies on RRMS, by integrating EDSS item-level data in a meaningful manner.Pharmacolog
    corecore