163 research outputs found

    Neutrino masses from new generations

    Get PDF
    We reconsider the possibility that Majorana masses for the three known neutrinos are generated radiatively by the presence of a fourth generation and one right-handed neutrino with Yukawa couplings and a Majorana mass term. We find that the observed light neutrino mass hierarchy is not compatible with low energy universality bounds in this minimal scenario, but all present data can be accommodated with five generations and two right-handed neutrinos. Within this framework, we explore the parameter space regions which are currently allowed and could lead to observable effects in neutrinoless double beta decay, μe\mu - e conversion in nuclei and μeγ\mu \rightarrow e \gamma experiments. We also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected. Improved figures 3 and

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Predictions for the Leptonic Dirac CP Violation Phase: a Systematic Phenomenological Analysis

    Get PDF
    We derive predictions for the Dirac phase δ\delta present in the 3×33\times 3 unitary neutrino mixing matrix U=UeUνU = U_e^{\dagger} \, U_{\nu}, where UeU_e and UνU_{\nu} are 3×33\times 3 unitary matrices which arise from the diagonalisation respectively of the charged lepton and the neutrino mass matrices. We consider forms of UeU_e and UνU_{\nu} allowing us to express δ\delta as a function of three neutrino mixing angles, present in UU, and the angles contained in UνU_{\nu}. We consider several forms of UνU_{\nu} determined by, or associated with, symmetries, tri-bimaximal, bimaximal, etc., for which the angles in UνU_{\nu} are fixed. For each of these forms and forms of UeU_e allowing to reproduce the measured values of the neutrino mixing angles, we construct the likelihood function for cosδ\cos \delta, using i) the latest results of the global fit analysis of neutrino oscillation data, and ii) the prospective sensitivities on the neutrino mixing angles. Our results, in particular, confirm the conclusion reached in earlier similar studies that the measurement of the Dirac phase in the neutrino mixing matrix, together with an improvement of the precision on the mixing angles, can provide unique information about the possible existence of symmetry in the lepton sector

    Children’s perceptions of dissimilarity in parenting styles are associated with internalizing and externalizing behavior

    Get PDF
    The purpose of this study was to examine the relationship between children’s perception of dissimilarity in parenting styles, and internalizing and externalizing problems in children. Children from the general population (n = 658) reported on the level of emotional warmth, rejection, and overprotection of both parents by filling out the child version of the Egna Minnen Beträffande Uppfostran (EMBU-C) and mothers completed the child behavior checklist (CBCL). Intraclass correlations were computed as measures of dissimilarity between parenting styles of mothers and fathers. Children’s perceived dissimilarity in parental emotional warmth is associated with internalizing and externalizing problems (β = 0.092, p < 0.05; β = 0.091, p < 0.05). Perceived dissimilarity between parents’ overprotection is associated with externalizing problems (β = 0.097, p < 0.05). Perceived dissimilarity between parenting styles is associated with externalizing and internalizing problems, over and above the effects of the level of the parenting styles. The results highlight the negative consequences of perceived dissimilarity between parents. To conclude, children have more internalizing and externalizing problems when they perceive their parents as more dissimilar in parenting styles

    Stable fermion mass matrices and the charged lepton contribution to neutrino mixing

    Get PDF
    We study the general properties of hierarchical fermion mass matrices in which the small eigenvalues are stable with respect to perturbations of the matrix entries and we consider specific applications to the charged lepton contribution to neutrino mixing. In particular, we show that the latter can account for the whole lepton mixing. In this case a value of sin \u3b813 73 me/m\u3bcsin \u3b823 48 0.03, as observed, can be obtained without the need of any fine-tuning, and present data allow to determine the last row of the charged lepton mass matrix with good accuracy. We also consider the case in which the neutrino sector only provides a maximal 12 rotation and show that i) present data provide a 2\u3c3 evidence for a non-vanishing 31 entry of the charged lepton mass matrix and ii) a plausible texture for the latter can account at the same time for the atmospheric mixing angle, the \u3b813angle, and the deviation of the \u3b812angle from \u3c0/2 without fine-tuning or tension with data. Finally, we show that the so-called \u201cinverted order\u201d of the 12 and 23 rotations in the charged lepton sector can be obtained without fine-tuning, up to corrections of order me/m\u3bc. \ua9 2014, The Author(s)

    Nonzero |Ue3| from charged lepton corrections and the atmospheric neutrino mixing angle

    Get PDF
    After the successful determination of the reactor neutrino mixing angle \theta_13 ~ 0.16 \neq 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle \theta_23 from \pi/4. Using the fact that the neutrino mixing matrix U = U_e^\dagger U_\nu, where U_e and U_\nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U_\nu has a i) bimaximal (BM), ii) tri-bimaximal (TBM) form, or else iii) corresponds to the conservation of the lepton charge L' = L_e - L_\mu - L_\tau (LC), we investigate quantitatively what are the minimal forms of U_e, in terms of angles and phases it contains, that can provide the requisite corrections to U_\nu so that \theta_13, \theta_23 and the solar neutrino mixing angle \theta_12 have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U_e, "standard" and "inverse", are considered. The results we obtain depend strongly on the type of ordering. In the case of "standard" ordering, in particular, the Dirac CP violation phase \delta, present in U, is predicted to have a value in a narrow interval around i) \delta ~ \pi in the BM (or LC) case, ii) \delta ~ 3\pi/2 or \pi/2 in the TBM case, the CP conserving values \delta = 0, \pi, 2\pi being excluded in the TBM case at more than 4\sigma

    Measurement of the charge asymmetry in dileptonic Decays of top quark pairs in pp collisions at √ s = 7 TeV using the ATLAS detector

    Get PDF
    A measurement of the top-antitop (tt) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb −1 of LHC pp collisions at a centre- of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: A tt/C, based on the reconstructed tt final state. The asymmetries are measured to be A ll/C = 0.024 +/- 0.015 (stat.) +/- 0.009 (syst.) Att/C = 0.021 +/- 0.025 (stat.) +/- 0.017 (syst.) The measured values are in agreement with the Standard Model predictions

    Radiative Corrections to Light Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double Beta Decay

    Get PDF
    We perform a detailed analysis of the one-loop corrections to the light neutrino mass matrix within low scale type I seesaw extensions of the Standard Model and their implications in experimental searches for neutrinoless double beta decay. We show that a sizable contribution to the effective Majorana neutrino mass from the exchange of heavy Majorana neutrinos is always possible, provided one requires a fine-tuned cancellation between the tree-level and one-loop contribution to the light neutrino masses. We quantify the level of fine-tuning as a function of the seesaw parameters and introduce a generalisation of the Casas-Ibarra parametrization of the neutrino Yukawa matrix, which easily allows to include the one-loop corrections to the light neutrino masses. \ua9 2015, The Author(s)

    Critical current density: Measurements vs. reality

    Get PDF
    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa 2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements. © Copyright EPLA, 2013
    corecore