31 research outputs found

    Genome-enabled phylogeographic investigation of the quarantine pathogen Ralstonia solanacearum race 3 biovar 2 and screening for sources of resistance against its core effectors.

    Get PDF
    Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of seventeen isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a select agent in the USA, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and carried ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of thirty-one type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Towards this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited.National Science Foundatio

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants

    Full text link
    [EN] Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers are amongst the most common markers of choice for studies of diversity and relationships in horticultural species. We have used 11 SSR and 35 SNP markers derived from transcriptome sequencing projects to fingerprint 48 accessions of a collection of brinjal (Solanum melongena), gboma (S. macrocarpon) and scarlet (S. aethiopicum) eggplant complexes, which also include their respective wild relatives S. incanum, S. dasyphyllum and S. anguivi. All SSR and SNP markers were polymorphic and 34 and 36 different genetic fingerprints were obtained with SSRs and SNPs, respectively. When combining both markers all accessions but two had different genetic profiles. Although on average SSRs were more informative than SNPs, with a higher number of alleles, genotypes and polymorphic information content (PIC), and expected heterozygosity (He) values, SNPs have proved highly informative in our materials. Low observed heterozygosity (Ho) and high fixation index (f) values confirm the high degree of homozygosity of eggplants. Genetic identities within groups of each complex were higher than with groups of other complexes, although differences in the ranks of genetic identity values among groups were observed between SSR and SNP markers. For low and intermediate values of pair-wise SNP genetic distances, a moderate correlation between SSR and SNP genetic distances was observed (r(2) = 0.592), but for high SNP genetic distances the correlation was low (r(2) = 0.080). The differences among markers resulted in different phenogram topologies, with a different eggplant complex being basal (gboma eggplant for SSRs and brinjal eggplant for SNPs) to the two others. Overall the results reveal that both types of markers are complementary for eggplant fingerprinting and that interpretation of relationships among groups may be greatly affected by the type of marker used.This work has been funded by European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (Grant AGL2015-64755-R from MINECO/FEDER). Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral contract (Programa FPI de la UPV-Subprograma 1/2013 call). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva-Formacion programme (FJCI-2015-24835).Gramazio, P.; Prohens Tomás, J.; Borras, D.; Plazas Ávila, MDLO.; Herraiz García, FJ.; Vilanova Navarro, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica. 213(264):1-18. https://doi.org/10.1007/s10681-017-2057-3S118213264Acquadro A, Barchi L, Gramazio P et al (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE 12:e0180774. https://doi.org/10.1371/journal.pone.0180774Adeniji O, Kusolwa P, Reuben S (2013) Morphological descriptors and micro satellite diversity among scarlet eggplant groups. Afr Crop Sci J 21(1):37–49Aguoru C, Omoigui L, Olasan J (2015) Molecular characterization of Solanum species (Solanum aethiopicum complex; Solanum macrocarpon and Solanum anguivi) using multiplex RAPD primers. J Plant Stud 4:27–34. https://doi.org/10.5539/jps.v4n1p27Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218Ashrafi H, Hill T, Stoffel K et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom 13:1–15. https://doi.org/10.1186/1471-2164-13-571Augustinos AA, Petropoulos C, Karasoulou V et al (2016) Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors. Span J Agric Res 14:e0710. https://doi.org/10.5424/sjar/2016144-9020Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4615-2381-9Blanca J, Cañizares J, Roig C et al (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom 12:104. https://doi.org/10.1186/1471-2164-12-104Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331Bukenya Z, Carasco J (1994) Biosystematic study of Solanum macrocarpon—S. dasyphyllum complex in Uganda and relations with Solanum linnaeanum. East Afr Agric For J 59(3):187–204Castillo A, Budak H, Varshney RK et al (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97. https://doi.org/10.1186/1471-2229-8-97Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608. https://doi.org/10.1007/s00122-008-0923-zCoates BS, Sumerford DV, Miller NJ et al (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564. https://doi.org/10.1093/jhered/esp028D’Agostino N, Golas T, van de Geest H et al (2013) Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genom 14:356. https://doi.org/10.1186/1471-2164-14-356Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of Vegetables. Studium Press, Houston, pp 257–322Davey J, Hohenlohe P, Etter P et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012De Barba M, Miquel C, Lobréaux S et al (2016) High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour 17(3):492–507. https://doi.org/10.1111/1755-0998.12594Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. https://doi.org/10.1038/nrg1348Felsenstein, J (2007). PHYLIP (Phylogeny Inference Package) Version 3.67. Department of Genome Sciences, University of Washington, Seattle, WA, USAFernandez-Silva I, Whitney J, Wainwright B (2013) Microsatellites for next-generation ecologists: a post-sequencing bioinformatics pipeline. PLoS ONE 8(2):e55990Filippi CV, Aguirre N, Rivas JG et al (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:52. https://doi.org/10.1186/s12870-014-0360-xFischer MC, Rellstab C, Leuzinger M et al (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69. https://doi.org/10.1186/s12864-016-3459-7Furini A, Wunder J (2004) Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theor Appl Genet 108:197–208. https://doi.org/10.1007/s00122-003-1439-1Gadaleta A, Giancaspro A, Zacheo S et al (2011) Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet Resour 9:243–246. https://doi.org/10.1017/S147926211100030XGe H, Liu Y, Jiang M et al (2013) Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci Hortic 162:71–75. https://doi.org/10.1016/j.scienta.2013.08.004Gonzaga ZJ (2015) Evaluation of SSR and SNP Markers for Molecular Breeding in Rice. Plant Breed Biotechnol 3:139–152. https://doi.org/10.9787/PBB.2015.3.2.139Goodwin S, McPherson J, McCombie W (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351Gramazio P, Blanca J, Ziarsolo P et al (2016) Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genom 17:300. https://doi.org/10.1186/s12864-016-2631-4Grover A, Sharma PC (2014) Development and use of molecular markers: past and present. Crit Rev Biotechnol 8551:1–13. https://doi.org/10.3109/07388551.2014.959891Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367. https://doi.org/10.1371/journal.pone.0001367Hess JE, Matala AP (2011) Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Mol Ecol Resour. https://doi.org/10.1111/j.1755-0998.2010.02958.xHighton R (1993) The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data. Mol Phylogenet Evol 2:337–343Hirakawa H, Shirasawa K, Miyatake K, Nunome, T et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660. https://doi.org/10.1093/dnares/dsu027Hong CP, Piao ZY, Kang TW et al (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356.Hu J, Wang L, Li J (2011) Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plant 55:577–580. https://doi.org/10.1007/s10535-011-0129-0Isshiki S, Iwata N, Khan MMR (2008) ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci Hortic 117:186–190. https://doi.org/10.1016/j.scienta.2008.04.003Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371. https://doi.org/10.1007/s00122-007-0570-9Kalia RK, Rai MK, Kalia S et al (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259. https://doi.org/10.1016/j.tig.2006.03.005Kaushik P, Prohens J, Vilanova S et al (2016) Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front Plant Sci 7:677Kim C, Guo H, Kong W et al (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE 8:e57039Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778. https://doi.org/10.1073/pnas.95.18.10774Lester RN, Daunay MC (2003) Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. Schriften zu Genetischen Ressourcen 22:137–152Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 433–456Lester RN, Jaeger PML, Bleijendaal-Spierings BHM et al (1990) African eggplants-a review of collecting in West Africa. Plant Genet Resour Newsl 81:17–26Levin R, Myers N, Bohs L (2006) Phylogenetic relationships among the ‘spiny solanums’ (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93(1):157–169Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239Li YC, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220. https://doi.org/10.1038/214637b0Martínez-Arias R, Calafell F, Mateu E et al (2001) Sequence variability of a human pseudogene. Genome Res 11:1071–1085. https://doi.org/10.1101/gr.167701Meyer RS, Karol KG, Little DP et al (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701. https://doi.org/10.1016/j.ympev.2012.02.006Muñoz-Falcón J, Prohens J, Vilanova S, Nuez F (2009) Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Ann Appl Biol 154(3):453–465Nandha PS, Singh J (2014) Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers. Plant Breed 133:28–35. https://doi.org/10.1111/pbr.12118Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771Nunome T, Negoro S, Kono I et al (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153. https://doi.org/10.1007/s00122-009-1116-0Page R (2001) TreeView. Glasgow University, GlasgowPeakall P, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28:2537–2539Pessarakli M, Dris R (2004) Pollination and breeding of eggplants. J Food Agric Environ 2:218–219Plazas M, Andújar I, Vilanova S et al (2014) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front. Plant Sci 5:318Ranil R, Niran H, Plazas M et al (2015) Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci Hortic 193:174–181. https://doi.org/10.1016/j.scienta.2015.07.030Sakata Y, Lester RN (1997) Chloroplast DNA diversity in brinjal eggplant (Solanum melongena L.) and related species. Euphytica 97:295–301. https://doi.org/10.1023/A:1003000612441Sakata Y, Nishio T, Matthews PJ (1991) Chloroplast DNA analysis of eggplant (Solanum melongena) and related species for their taxonomic affinity. Euphytica 55:21–26Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214. https://doi.org/10.1186/1471-2148-13-214Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161Sneath P, Sokal R (1973) Numerical taxonomy. The principles and practice of numerical classification. W H Freeman Limited, San FranciscoStàgel A, Portis E, Toppino L et al (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genom 9:357. https://doi.org/10.1186/1471-2164-9-357Sunseri F, Polignano GB, Alba V et al (2010) Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 4:231–241Syfert MM, Castañeda-Álvarez NP, Khoury CK et al (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651. https://doi.org/10.3732/ajb.1500539Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. https://doi.org/10.1007/s00122-002-1031-0Thomson MJ, Alfred J, Dangl J et al (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212. https://doi.org/10.9787/PBB.2014.2.3.195Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017Tumbilen Y, Frary A, Daunay MC, Doganlar S (2011) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Biol 35:125–136. https://doi.org/10.3906/biy-0906-57van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299. https://doi.org/10.1007/s00122-009-1256-2Van Tassell CP, Smith TPL, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252. https://doi.org/10.1038/nmeth.1185Varshney R, Graner A, Sorrells M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. https://doi.org/10.1016/j.plantsci.2007.08.010Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30:647–660. https://doi.org/10.1007/s11032-011-9650-2Vilanova S, Hurtado M, Cardona A (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR markers. Not Bot Horti Agrobo Cluj-Napoca 42:59–65Vogel JP, Gu YQ, Twigg P et al (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195. https://doi.org/10.1007/s00122-006-0285-3Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193. https://doi.org/10.1111/boj.12053Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the Orient. Taxon 59:49–56. https://doi.org/10.2307/27757050Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420. https://doi.org/10.2307/2406450Xiao M, Zhang Y, Chen X et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134. https://doi.org/10.1016/j.jbiotec.2013.04.004Yan J, Yang X, Shah T et al (2010) High-throughput SNP genotyping with the Goldengate assay in maize. Mol Breed 25:441–451. https://doi.org/10.1007/s11032-009-9343-2Yang X, Xu Y, Shah T et al (2011) Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica 139:1045–1054. https://doi.org/10.1007/s10709-011-9606-9Yu J, Zhang Z, Zhu C et al (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63. https://doi.org/10.3835/plantgenome2008.09.0009Zhan L, Paterson I, Fraser B (2016) MEGASAT: automated inference of microsatellite genotypes from sequence data. Ecol Resour, Mol. https://doi.org/10.1111/1755-0998.1256

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412

    The complete chloroplast genome of eggplant ( Solanum melongena

    No full text

    Host suitability of solanum torvum cultivars to Meloidogyne incognita and M. javanica and population dynamics

    No full text
    Several experiments were carried out to assess the performance of commercial Solanum torvum cultivars against the root knot nematodes Meloidogyne incognitaandM. javanicain Spain. The response ofS. torvum rootstock cultivars Brutus, Espina, Salutamu and Torpedo againstM. incognita andMi-1.2(a) virulentM. javanicaisolates was deter-mined in pot experiments, and of ‘Brutus’ to anN-virulent isolate ofM. incognita, compared with that of the eggplantS. melongena‘Cristal’.Postprint (updated version

    Characterization of interspecific hybrids and backcross generations from crosses between twocultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding

    Full text link
    Common (Solanum melongena L.) and scarlet (S. aethiopicum L.) eggplants are cultivated for their fruits and form part of the same genepool. We have studied plant and fruit characteristics, pollen viability and seed set, phenolics content, and fruit flesh browning in accessions of S. melongena and S. aethiopicum Kumba group, as well as interspecific hybrids between these species and first backcross generations to each parental species. Respective genotypes were also characterized with seven polymorphic SSR markers. The results demonstrate that many differences exist for plant and fruit morphology among S. melongena, S. aethiopicum and the interspecific hybrids. The latter are very vigorous and generally intermediate between the two parents, except for fruit size which is smaller (and parthenocarpic due to a high pollen sterility) than those of any of the parents. Backcross progenies also exhibited morphological variation with moderate heritability values for the attributes evaluated. Variation for fruit size was present in the backcross generations but fruits were small resulting in little variation for fruit shape. Backcross plants with moderate fertility produced seeded fruits. Primary hybrids had fruit phenolics content similar to that of S. aethiopicum, the parent with lowest phenolics concentration, and were heterotic for fruit flesh browning. Backcross progenies were quite variable for both traits. SSR markers did not reveal segregation distortion in the backcross generations for these interspecific hybrids. The results demonstrate that generations derived from sexual interspecific hybridization can be a powerful tool for S. melongena and S. aethiopicum Kumba group breeding. © 2012 Springer Science+Business Media B.V.This work was partially financed by the Ministerio de Ciencia y Tecnologia (AGL2009-07257 and RF-2008-00008-00-00).Prohens Tomás, J.; Plazas Ávila, MDLO.; Raigón Jiménez, MD.; Seguí-Simarro, JM.; Stommel, JR.; Vilanova Navarro, S. (2012). Characterization of interspecific hybrids and backcross generations from crosses between twocultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica. 186(2):517-538. doi:10.1007/s10681-012-0652-xS517538186
    corecore