8 research outputs found

    Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle.</p> <p>Methods</p> <p>An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters.</p> <p>Results</p> <p>Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively.</p> <p>Conclusion</p> <p>The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.</p

    Energetics of paraplegic cycling: a new theoretical framework and efficiency characterisation for untrained subjects

    No full text
    Complete lower-limb paralysis resulting from spinal cord injury precludes volitional leg exercise, leading to muscle atrophy and physiological de-conditioning. Cycling can be achieved using phased stimulation of the leg muscles. With training there are positive physiological adaptations and health improvement. Prior to training, however, power output may not be sufficient to overcome losses involved in rotating the legs and little is known about the energetics of untrained paralysed muscles. Here we propose efficiency measures appropriate to subjects with severe physical impairment performing cycle ergometry. These account for useful internal work (i.e. muscular work done in moving leg mass) and are applicable even for very low work rates. Experimentally, we estimated total work efficiency of ten untrained subjects with paraplegia to be 7.6 +/- 2.1% (mean +/- SD). This is close to values previously reported for anaesthetised able-bodied individuals performing stimulated cycling exercise, but is less than 1/3 of that of able-bodied subjects cycling volitionally. Correspondingly, oxygen cost of the work (38.8 +/- 13.9 ml min(-1) W-1) was found to be similar to 3.5 times higher. This indicates the need, for increased power output from paralysed subjects, to maximise muscle strength through training, and to improve efficiency by determining better methods of stimulating the individual muscles involved in the exercise
    corecore