42 research outputs found
A GFP-lacZ Bicistronic Reporter System for Promoter Analysis in Environmental Gram-Negative Bacteria
Here, we describe a bicistronic reporter system for the analysis of promoter activity in a variety of Gram-negative bacteria at both the population and single-cell levels. This synthetic genetic tool utilizes an artificial operon comprising the gfp and lacZ genes that are assembled in a suicide vector, which is integrated at specific sites within the chromosome of the target bacterium, thereby creating a monocopy reporter system. This tool was instrumental for the complete in vivo characterization of two promoters, Pb and Pc, that drive the expression of the benzoate and catechol degradation pathways, respectively, of the soil bacterium Pseudomonas putida KT2440. The parameterization of these promoters in a population (using β-galactosidase assays) and in single cells (using flow cytometry) was necessary to examine the basic numerical features of these systems, such as the basal and maximal levels and the induction kinetics in response to an inducer (benzoate). Remarkably, GFP afforded a view of the process at a much higher resolution compared with standard lacZ tests; changes in fluorescence faithfully reflected variations in the transcriptional regimes of individual bacteria. The broad host range of the vector/reporter platform is an asset for the characterization of promoters in different bacteria, thereby expanding the diversity of genomic chasses amenable to Synthetic Biology methods
Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life
In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins
Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery
In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent
kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome.
Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1
insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell
cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in
tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during
S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid
screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of
the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction
between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green
fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index
compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for
WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome
Alleles of the major histocompatibility complex play a role in the pathogenesis of pancreatic acinar atrophy in dogs
Exocrine pancreatic insufficiency (EPI) is a disease wherein pancreatic acinar cells fail to synthesize and secrete sufficient amounts of digestive enzymes for normal digestion of food. EPI affects many dog breeds, with a dramatically higher prevalence in the German shepherd dog (GSD) population. In this breed and perhaps others, EPI most often results from degeneration of the acinar cells of the pancreas, a hereditary disorder termed pancreatic acinar atrophy (PAA). Evidence of lymphocytic infiltration indicates that PAA is an autoimmune disease, but the genetic etiology remains unclear. Data from global gene expression and single nucleotide polymorphism profiles in the GSD suggest the involvement of the major histocompatibility complex [MHC; dog leukocyte antigen (DLA)]. To determine if alleles of the MHC influence development of EPI, genotyping of polymorphic class I (DLA-88) and II loci (DLA-DRB1, DLA-DQA1, and DLA-DQB1) was carried out for 70 affected and 63 control GSDs, and four-locus haplotypes were determined. One haplotype containing a novel allele of DLA-88 is very highly associated with EPI (OR > 17; P = 0.000125), while two haplotypes were found to confer protection from EPI (P = 0.00087 and 0.0115). Described herein is the genotyping of MHC class I and II loci in a GSD cohort, establishment of four-locus haplotypes, and association of alleles/haplotypes with EPI