60 research outputs found

    Polyunsaturated fatty acid intake and prevalence of eczema and rhinoconjunctivitis in Japanese children: The Ryukyus Child Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent increase in the prevalence of allergic disorders might be a consequence of increased intake of n-6 polyunsaturated fatty acids (PUFAs) and reduced intake of n-3 PUFAs. The current cross-sectional study examined the association between intake levels and the prevalence of eczema and rhinoconjunctivitis in Japanese children.</p> <p>Methods</p> <p>Subjects were 23,388 schoolchildren aged 6-15 years residing in Okinawa. The presence of eczema and/or rhinoconjunctivitis was determined according to the criteria of the International Study of Asthma and Allergies in Childhood. A brief diet history questionnaire for children and adolescents was administered to acquire information on dietary factors. Adjustment was made for age, sex, residential municipality, number of siblings, smoking in the household, body mass index, paternal and maternal history of allergic diseases, and paternal and maternal educational level.</p> <p>Results</p> <p>The prevalences of eczema and rhinoconjunctivitis in the previous 12 months were 7.0% and 8.0%, respectively. Consumption of PUFAs, n-3 PUFAs, α-linolenic acid, n-6 PUFAs, and linoleic acid was positively associated with the prevalence of eczema: the adjusted odds ratios (ORs) between extreme quintiles (95% confidence intervals [CIs], <it>P </it>for trend) were 1.26 (1.07-1.48, 0.04), 1.31 (1.11-1.54, 0.009), 1.31 (1.12-1.55, 0.003), 1.26 (1.07-1.48, 0.01), and 1.27 (1.08-1.49, 0.01), respectively. Arachidonic acid intake was independently inversely related to eczema: the adjusted OR between extreme quintiles was 0.81 (0.69-0.95, 0.0008). Eczema was not associated with eicosapentaenoic or docosahexaenoic acid intake, or with the ratio of n-3 to n-6 PUFA intake. Only arachidonic acid intake was statistically significantly related to the prevalence of rhinoconjunctivitis, showing a clear inverse linear trend: the adjusted OR between extreme quintiles was 0.86 (0.74-0.997, 0.03).</p> <p>Conclusions</p> <p>Consumption of n-3 and n-6 PUFAs, especially α-linolenic acid and linoleic acid, may be positively associated with eczema. Arachidonic acid intake may be inversely related to eczema and rhinoconjunctivitis.</p

    Reduction of EEG Theta Power and Changes in Motor Activity in Rats Treated with Ceftriaxone

    Get PDF
    The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7–9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation

    Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection

    Get PDF
    Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. Strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines
    corecore