187 research outputs found

    Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system.</p> <p>Results</p> <p>By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase.</p> <p>Conclusion</p> <p>These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.</p

    Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    Get PDF
    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS

    The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Get PDF
    Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.The authors are grateful for the constant support provided by the Hospital Universitari de Sant Joan and the Universitat Rovira i Virgili. Salvador Fernández-Arroyo is the recipient of a Sara Borrell grant (CD12/00672) from the Instituto de Salud Carlos III, Madrid, Spain. The authors also thank the Andalusian Regional Government Council of Innovation and Science for the Excellence Project P11-CTS-7625 and Generalitat Valenciana for the project PROMETEO/2012/007. This work was also supported by projects of the Fundación Areces and the Fundación MAGAR

    New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options

    Get PDF
    Joint trauma can lead to a spectrum of acute lesions, including osteochondral fractures, ligament or meniscus tears and damage to the articular cartilage. This is often associated with intraarticular bleeding and causes posttraumatic joint inflammation. Although the acute symptoms resolve and some of the lesions can be surgically repaired, joint injury triggers a chronic remodeling process in cartilage and other joint tissues that ultimately manifests as osteoarthritis in a majority of cases. The objective of the present review is to summarize information on pathogenetic mechanisms involved in the acute and chronic consequences of joint trauma and discuss potential pharmacological interventions. The focus of the review is on the early events that follow joint trauma since therapies for posttraumatic joint inflammation are not available and this represents a unique window of opportunity to limit chronic consequences

    Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria

    Get PDF
    Background: Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and A. dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. A. annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. Results: Both Artemisia EOs were able to deter C. vomitoria oviposition on fresh beef meat. At 0.05 μL cm-2 A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD50 of 0.49 and 0.79 μL EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC50 values were 49.54 and 88.09 μL L-1 air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC50 = 202.6 and 472.4 mg L-1, respectively for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. Conclusions: Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies

    Real World Learning and Authentic Assessment

    Get PDF
    As students increasingly adopt a consumerist lifestyle academics are under pressure to assess and mark more students’ assignments in quicker turn around periods. In no other area is the marketisation shift between student and academic more apparent in the accountability that academics now need to demonstrate to students in their grading and feedback (Boud & Molloy, 2013). When evaluating their higher education experience students are most likely to complain about their grading or feedback (Boud & Molloy, 2013) and National Student Survey results consistently indicate that this category, more than any other, has the highest student dissatisfaction rates (Race, 2014)

    Real World Learning: Simulation and Gaming

    Get PDF
    Simulations and games are being used across a variety of subject areas as a means to provide insight into real world situations within a classroom setting; they offer many of the benefits of real world learning but without some of the associated risks and costs. Lean, Moizer, Derham, Strachan and Bhuiyan aim to evaluate the role of simulations and games in real world learning. The nature of simulations and games is discussed with reference to a variety of examples in Higher Education. Their role in real world learning is evaluated with reference to the benefits and challenges of their use for teaching and learning in Higher Education. Three case studies from diverse subject contexts are reported to illustrate the use of simulations and games and some of the associated issues
    corecore