68 research outputs found
Comprehensive analysis of the membrane phosphoproteome regulated by oligogalacturonides in Arabidopsis thaliana
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity
Camalexin Quantification in Arabidopsis thaliana Leaves Infected with Botrytis cinerea
Phytoalexins are heterogeneous low molecular mass secondary metabolites with antimicrobial activity produced in response to pathogen invasion attempts at the infection site and represent an important part of the plant defense repertoire. Camalexin (3-Thiazol-2âČ-yl-indole) is a known phytoalexin first detected and isolated in Camelina sativa, from which it takes its name, infected with Alternaria brassicae (Browne et al., 1991). Production of camalexin is also induced in Arabidopsis thaliana leaves by a range of biotrophic and necrotrophic plant pathogens (bacteria, oomycetes, fungi and viruses) (Ahuja et al., 2012) as well as by abiotic stresses, such as UV and chemicals (e.g. acifluorfen, paraquat, chlorsulfuron and α-amino butyric acid) (Zhao et al., 1998; Tierens et al., 2002). Camalexin originates from tryptophan and CYP79B2 and CYP71B15 (PAD3) are P450 enzymes that catalyze important steps in its biosynthetic pathway (Glawischnig, 2007). In this protocol the detection and quantification of camalexin produced in Arabidopsis leaves infected with the necrotrophic fungus Botrytis cinerea is described
Autologous hematopoietic stem cell transplantation versus low-dose immunosuppression in secondary-progressive multiple sclerosis
BACKGROUND AND PURPOSE: Effectiveness of autologous haematopoietic stem cell transplantation (AHSCT) in relapsingâremitting multiple sclerosis (MS) is well known, but in secondaryâprogressive (SP)âMS it is still controversial. Therefore, AHSCT activity was evaluated in SPâMS using lowâdose immunosuppression with cyclophosphamide (Cy) as a comparative treatment. METHODS: In this retrospective monocentric 1:2 matched study, SPâMS patients were treated with intermediateâintensity AHSCT (cases) or intravenous pulses of Cy (controls) at a single academic centre in Florence. Controls were selected according to baseline characteristics adopting cardinality matching after trimming on the estimated propensity score. KaplanâMeier and Cox analyses were used to estimate survival free from relapses (RâFS), survival free from disability progression (PâFS), and no evidence of disease activity 2 (NEDAâ2). RESULTS: A total of 93 SPâMS patients were included: 31 AHSCT, 62 Cy. Mean followâup was 99 months in the AHSCT group and 91 months in the Cy group. RâFS was higher in AHSCT compared to Cy patients: at Year 5, 100% versus 52%, respectively (p < 0.0001). PâFS did not differ between the groups (at Year 5: 70% in AHSCT and 81% in Cy, p = 0.572), nor did NEDAâ2 (p = 0.379). A sensitivity analysis including only the 31 âbestâmatchedâ controls confirmed these results. Three neoplasms (2 Cy, 1 AHSCT) and two fatalities (2 Cy) occurred. CONCLUSIONS: This study provides Class III evidence, in SPâMS, on the superior effectiveness of AHSCT compared to Cy on relapse activity, without differences on disability accrual. Although the suppression of relapses was observed in the AHSCT group only, AHSCT did not show advantages over Cy on disability, suggesting that in SPâMS disability progression becomes based more on noninflammatory neurodegeneration than on inflammation
Il sistema immunitario della pianta: basi biochimiche e molecolari del riconoscimento dei patogeni e dell'attivazione delle difese della pianta
Durante tutta la loro vita, le piante sono impegnate in una continua lotta con
potenziali agenti patogeni. Per essere patogenici, la maggior parte dei microbi
deve avere accesso allâinterno della pianta, penetrando direttamente attraverso
la superficie della foglia o della radice o entrando attraverso ferite o
aperture naturali come gli stomi. Nelle fasi iniziali dellâinfezione, il patogeno
viene contrastato da difese strutturali preformate (ad esempio la parete
cellulare della pianta) e biochimiche (ad esempio le fitoanticipine). Inoltre,
le cellule vegetali sono in grado di riconoscere rapidamente un microrganismo
potenzialmente pericoloso e attivare una vasta gamma di risposte volte
a ucciderlo e a limitarne la diffusione nellâospite. EÌ importante sottolineare
che le piante discriminano tra patogeni e microbi innocui o benefici, assicurando
che adeguate risposte, che sono costose per la pianta, siano indotte solo
quando necessarie. Le piante non hanno cellule immunitarie circolanti e non
hanno un sistema immunitario adattativo come nei vertebrati; invece, ogni
cellula eÌ in grado di riconoscere la presenza di un agente patogeno, attraverso
meccanismi biochimici autonomi che assomigliano al sistema immunitario
innato degli animali. Per questo motivo, parliamo spesso della immunitaÌ innata
delle piante per descrivere il complesso di risposte di difesa che vengono
rapidamente indotte nel sito di infezione. Successivamente, si possono osservare
risposte piuÌ a lungo termine non solo nei tessuti direttamente a contatto
con lâagente patogeno, ma anche nel resto della pianta, e puoÌ verificarsi una
resistenza acquisita alle infezioni successive
Large-scale proteome analysis of tomato fruit microsomes
Solanum lycopersicum (tomato) is one of the most important
plant crops and a model system to study development and ripening
of fleshy fruit. The membrane system is very important for
all biological processes; for example, the endoplasmic reticulum
(ER) and the Golgi apparatus play a pivotal role in the secretion
of proteins and in the synthesis of the non-cellulosic portion of
the cell wall. The aim of this work was to characterize the membrane
proteome profile of tomato fruit at the ââmature greenââ ripening
stage. Total microsomes were prepared and separated by
centrifugation through a iodixanol continuous gradient. The
organelle distribution pattern (plasma membrane, ER, Golgi,
chloroplast, nucleus) was determined using known markers of
these compartments. Proteins were identified using a combination
of 1-D SDS polyacrylamide gel electrophoresis and nanoLC-ESIMS/
MS. After electrophoresis, each lane was cut into 14 pieces,
digested with trypsin and analyzed by nano-HPLC coupled to an
Orbitrap mass spectrometer. More than 2400 different proteins
were identified, for which the Arabidopsis homologue was
searched and subjected to GO analysis to determine the represented
biological process, molecular function and subcellular
localization. GO term enrichment analysis confirmed the enrichment
in membrane proteins. This large scale proteomic analysis
provides a detailed reference map of the membrane proteome at
specific stages of tomato fruit development and a background for
comparison of physiological processes such as ripening or biotic
and abiotic stresses
Ruolo degli ormoni vegetali nella regolazione delle risposte immunitarie
Essendo organismi sessili, le piante monitorano continuamente lâambiente
che le circonda e modificano, di conseguenza, la loro crescita, sviluppo e difesa
al fine di adattarsi e ottimizzare la produttivitaÌ. Le piante hanno spesso
necessitaÌ di contrastare i tentativi di invasione di diversi agenti patogeni microbici:
virus, batteri, funghi e oomiceti. Sulla base delle diverse strategie di
infezione, i fitopatogeni possono essere classificati come biotrofici o necrotrofici.
I patogeni biotrofici si moltiplicano dapprima negli spazi intercellulari
nutrendosi di cellule vegetali viventi, mentre i patogeni necrotrofici uccidono
le cellule ospiti utilizzando metaboliti tossici e quindi ottengono i nutrienti
dalle cellule morte. Durante la coevoluzione con gli agenti patogeni, le piante
hanno sviluppato sofisticati sistemi di percezione e sistemi di difesa inducibili
per limitarne lâinvasione. Gli ormoni vegetali, o fitormoni, sono piccole
molecole di segnalazione endogene con diverse proprietaÌ chimiche che svolgono
ruoli critici nellâadattamento ai cambiamenti ambientali e governano le
risposte a unâampia varietaÌ di stress biotici e abiotici regolando lâequilibrio tra
crescita delle piante e risposta di difesa. LâattivitaÌ di un determinato ormone
dipende dalla sua biosintesi, coniugazione, trasporto a lunga e/o breve distanza,
degradazione noncheÌ attivazione e inattivazione ormonale. Gli ormoni vegetali
comprendono etilene (ET), acido jasmonico (JA) e acido salicilico (SA)
che svolgono un ruolo centrale nella regolazione delle risposte immunitarie
delle piante. Inoltre, anche per altri ormoni vegetali, come lâauxina (acido indol-
3-acetico, IAA), lâacido abscissico (ABA), le citokinine, le gibberelline e i
brassinosteroidi (BR), ben noti per il loro ruolo nella regolazione dello sviluppo
e della crescita delle piante, eÌ emerso recentemente un ruolo come regolatori
chiave dellâimmunitaÌ delle piante. Gli ormoni vegetali interagiscono tra
di loro in complessi network per bilanciare la risposta a segnali di sviluppo e
ambientali e quindi limitare i costi di fitness associati alla difesa. I meccanismi
molecolari che regolano questi network di segnalazione ormonali sono
in gran parte sconosciuti. Inoltre, i patogeni mirano alle vie di segnalazione
ormonale per disturbare ed eludere le risposte di difesa delle piante
Phosphoproteomics of early oligogalacturonides signaling in Arabidopsis
During the infection of a plant tissue by phytopathogenic fungi,
homogalacturonan, the main component of pectin, is broken down into fragments called oligogalacturonides (OGs) by the
action of fungal polygalacturonases. The interaction between polygalacturonases
and their inhibitors (polygalacturonase-inhibiting
proteins: PGIPs) in the plant cell wall favours the formation
of OGs with degree of polymerization from 10 to 15 that function
as signals for the activation of the plant innate immune
response. Although the effects of OGs in plant defence are well
recognised, the perception/transduction mechanisms of these elicitors
are still not completely described. By a 2D-DIGE approach
coupled with the quantitative phospho-specific stain ProQ Diamond
we studied the early events of phosphorylation in Arabidopsis
thaliana in response to OGs. Soluble proteins and prefractionated
total membranes were analyzed and the differential
phosphorylated proteins were identified by MALDI-ToF mass
spectrometry. Phosphorylation changes were detected in several
oxidative stress-related proteins that included heat shock proteins,
jasmonate-inducible jacalin proteins and H+-ATPases,
among which the vacuolar-H+ATPase encoded by DET3 gene.
Phosphorilation changes were also detected in plasma membrane
proteins like AtPcaP1, a plasma membrane-bounded protein
involved in the cross-talk between Ca+2 signaling and PtdInsPs
in the intracellular signaling pathway
Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions
Polygalacturonases (PGs) are produced by fungal pathogens during early plant infection and are believed to be important pathogenicity
factors. Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins which reduce the hydrolytic activity of endoPGs and favor
the accumulation of long-chain oligogalacturonides (OGs) which are elicitors of a variety of defense responses. PGIPs belong to the
superfamily of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. A number of evidence
demonstrates that PGIPs efficiently inhibit fungal invasion
Aqueous solution properties of bacterial poly-gamma-D-glutamate
A preliminary physico-chemical characterization of a bacterial poly-Îł-glutamate sample (96% D-glutamic acid content), Îł-D-PGA, in dilute aqueous solutions has been carried out by means of potentiometric, viscosimetric, infrared and chiroptical spectroscopic experiments. The biopolymer exhibits properties strikingly dependent on a number of parameters, mainly: polymer concentration, pH, ionic strength, and nature of added salt. In dilute solutions (polymer concentration around 0.1% w/V) and for pH > 7, Îł-D-PGA chains assume elongated, stiff conformations while upon protonation (pH < 3) globular states would prevail. Addition of divalent counterions (Ca(II)) also leads to compact Îł-D-PGA conformations
- âŠ