127 research outputs found

    Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs.

    Get PDF
    The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx(-/-) mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration

    Discharge Synchrony during the Transition of Behavioral Goal Representations Encoded by Discharge Rates of Prefrontal Neurons

    Get PDF
    To investigate the temporal relationship between synchrony in the discharge of neuron pairs and modulation of the discharge rate, we recorded the neuronal activity of the lateral prefrontal cortex of monkeys performing a behavioral task that required them to plan an immediate goal of action to attain a final goal. Information about the final goal was retrieved via visual instruction signals, whereas information about the immediate goal was generated internally. The synchrony of neuron pair discharges was analyzed separately from changes in the firing rate of individual neurons during a preparatory period. We focused on neuron pairs that exhibited a representation of the final goal followed by a representation of the immediate goal at a later stage. We found that changes in synchrony and discharge rates appeared to be complementary at different phases of the behavioral task. Synchrony was maximized during a specific phase in the preparatory period corresponding to a transitional stage when the neuronal activity representing the final goal was replaced with that representing the immediate goal. We hypothesize that the transient increase in discharge synchrony is an indication of a process that facilitates dynamic changes in the prefrontal neural circuits in order to undergo profound state changes

    In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites

    Get PDF
    We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5′ splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189 249 U2-dependent 5′ splice sites of the entire human genome and found that a new variable, the SD-Score, which represents a common logarithm of the frequency of a specific 5′ splice site, efficiently predicts the splicing consequences of these minigenes. We also employed the information contents (Ri) to improve the prediction accuracy. We validated our algorithm by analyzing 32 additional minigenes as well as 179 previously reported splicing mutations. The SD-Score algorithm predicted aberrant splicings in 198 of 204 sites (sensitivity = 97.1%) and normal splicings in 36 of 38 sites (specificity = 94.7%). Simulation of all possible exonic mutations at positions −3, −2 and −1 of the 189 249 sites predicts that 37.8, 88.8 and 96.8% of these mutations would affect pre-mRNA splicing, respectively. We propose that the SD-Score algorithm is a practical tool to predict splicing consequences of mutations affecting the 5′ splice site
    corecore