43 research outputs found

    Distinct Inhibitory Effects of Tacrolimus and Cyclosporin A on Calcineurin Phosphatase Activity

    Full text link

    Effect of CYP2C19 polymorphisms on the clinical outcome of low-dose clobazam therapy in Japanese patients with epilepsy.

    Get PDF
    [Purpose]Clobazam (CLB) is metabolized by cytochrome P450 (CYP) 3A4 to yield N-desmethylclobazam (N-CLB), which is further inactivated by CYP2C19. The aim of this study was to retrospectively evaluate the relationship between CYP2C19 polymorphisms and the efficacy of low-dose, add-on CLB therapy in Japanese patients with epilepsy. [Methods]Fifty patients were divided into three groups according to their CYP2C19 polymorphism. CLB and N-CLB serum concentrations and seizure frequency before and after starting CLB were analyzed. [Results]Extensive metabolizers (EMs, n = 11), intermediate metabolizers (IMs, n = 22), and poor metabolizers (PMs, n = 17) were included. Although the dose-normalized CLB serum concentrations were not significantly different, the dose-normalized N-CLB serum concentrations were significantly higher in PMs than in EMs or IMs. Seizure frequency was significantly decreased by the CLB therapy in PMs (p < 0.01), but not in EMs or IMs. CLB serum concentrations did not correlate with seizure reduction rate, but median N-CLB serum concentrations were significantly higher in patients with excellent seizure control (≧90 % seizure reduction) compared to those with ≧50 % seizure reduction or with <50 % seizure reduction (1103, 341, and 570 ng/mL, respectively). [Conclusions]The efficacy of low-dose CLB therapy was significantly influenced by CYP2C19 polymorphisms. Ideally, CLB therapy should be started with a low dose (2.5 mg/day) and dosage increased until N-CLB serum concentration reaches 1100 ng/mL or until the desired effect is acquired, a recommendation that is particularly important for PMs

    Regulation of Transglutaminase Activity in Articular Chondrocytes through Thrombin Receptor-Mediated Factor XIII Synthesis

    No full text
    Transglutaminases are a family of enzymes that catalyze the formation of η(γ-glutamyl)lysine isopeptide bonds in proteins, an activity that has been implicated in the pathogenesis of cartilage matrix mineralization in degenerative arthritis. Type II transglutaminase and thrombin-activatable factor XIII have been identified in articular cartilage. Thrombin, a coagulation protease, is found in pathological synovial fluids, and is known to stimulate transglutaminase activity in non-articular tissues. We investigated the effects of thrombin on transglutaminase activity in porcine articular chondrocytes. Direct addition of thrombin to chondrocyte lysates resulted in increased transglutaminase activity due to proteolytic conversion of factor XIII to XIIIa. Thrombin-treated chondrocyte cultures (0.001 to 2.0U/ml) also showed increased transglutaminase activity. Thrombin treatment of chondrocyte cultures increased trans-glutaminase activity as early as 15 minutes after addition, an effect that we attributed to factor XIII activation. Additional stimulatory effects of thrombin were observed in cultured chondrocytes at 4 and 24 hours. A thrombin receptor agonist peptide (TRAP) which activates the PAR1 thrombin receptor mimicked these later effects. Thrombin treatment of chondrocyte cultures increased factor XIII mRNA and protein levels, without affecting levels of type II transglutaminase.Thus, thrombin stimulates transglutaminase activity in articular cartilage by directly cleaving factor XIII and by receptor-mediated up-regulation of factor XIII synthesis. Such increases in potential transglutaminase activity may facilitate pathological matrix calcification in degenerative arthritis

    Speech Correction Class at Izushi Primary School ―History and recent problems―

    Get PDF
    Fifteen years have passed since the speech correction class was established at Izushi Primary School in Okayama. Of the 2252 children who studied in this class, 737 finished the curriculum. This class has played an important role in the education and rehabilitation of speech handicapped school children. The author introduced the history of this class and presented the recent problems

    Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.

    No full text
    DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis

    Antifibrotic effects of 2-carba cyclic phosphatidic acid (2ccPA) in systemic sclerosis: contribution to the novel treatment

    No full text
    Abstract Background Cyclic phosphatidic acid (cPA) has an inhibitory effect on the autotaxin (ATX)/lysophosphatidic acid (LPA) axis, which has been implicated to play an important role in the progression of fibrosis in systemic sclerosis (SSc). The purpose of this study is to assess the antifibrotic activity of cPA for the treatment of SSc using SSc skin fibroblasts and an animal model of bleomycin-induced skin fibrosis. Methods We used a chemically stable derivative of cPA (2ccPA). First, we investigated the effect of 2ccPA on extracellular matrix (ECM) expression in skin fibroblasts. Next, the effect of 2ccPA on the intracellular cAMP levels was determined to investigate the mechanisms of the antifibrotic activity of 2ccPA. Finally, we administered 2ccPA to bleomycin-induced SSc model mice to evaluate whether 2ccPA prevented the progression of skin fibrosis. Results 2ccPA decreased ECM expression in SSc skin fibroblasts and TGF-β1-treated healthy skin fibroblasts without LPA stimulation. 2ccPA increased the intracellular cAMP levels in skin fibroblasts, suggesting that the antifibrotic effect of 2ccPA was the consequence of the increase in the intracellular cAMP levels. Administration of 2ccPA also ameliorated the progression of bleomycin-induced skin fibrosis in mice. Conclusions Our data indicated that 2ccPA had inhibitory effects on the progression of skin fibrosis by abrogating ECM production from activated skin fibroblasts. These cells were repressed, at least in part, by increased intracellular cAMP levels. 2ccPA may be able to be used to treat fibrotic lesions in SSc
    corecore