216 research outputs found
Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach
Background: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS) cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.
Methodology/Principal Findings: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT) and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES) cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3 beta, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine) and cultured in human embryonic stem cell (ES) medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.
Conclusion/Significance: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells
Evaluation of a Live-Attenuated Foot-and-Mouth Disease Virus as a Vaccine Candidate
AbstractA variant of foot-and-mouth disease virus (FMDV) lacking the leader (L) coding region (A12-LLV2) was previously constructed and shown to be less virulent in cattle than its wild-type parent (A12-IC). In this study, cattle were tested for their clinical and immunological responses to subcutaneous inoculation with A12-LLV2 or A12-IC or to intramuscular vaccination with chemically inactivated A12-IC. Five weeks postinoculation animals were challenged by intradermal inoculation in the tongue with a virulent cattle-passaged virus. A12-LLV2-inoculated animals showed no clinical signs of disease and developed a neutralizing antibody response by 4 days postinoculation, whereas a companion control bovine did not seroconvert. After challenge, two of three inoculated animals did not develop lesions, but showed mild signs of infection. The third inoculated animal developed some lesions, but these were less severe than in the uninoculated control animal, which showed classical FMD. All animals inoculated with A12-IC developed a fever, two showed typical FMD lesions, and the companion control seroconverted, indicating that it had acquired infection by contact. The A12-IC-inoculated animals and the control were protected from challenge. Animals vaccinated with inactivated virus showed no clinical signs of disease and developed a neutralizing antibody response, and the control did not seroconvert. Upon challenge none of the vaccinated animals developed lesions, one developed a fever, and the control developed FMD. These experiments demonstrate the potential of a rationally designed live-attenuated FMDV vaccine
Sound Propagation in Nematic Fermi Liquid
We study the longitudinal sound propagation in the electronic nematic Fermi
liquid where the Fermi surface is distorted due to the spontaneously broken
rotational symmetry. The behavior of the sound wave in the nematic ordered
state is dramatically different from that in the isotropic Fermi liquid. The
collective modes associated with the fluctuations of the Fermi surface
distortion in the nematic Fermi liquid leads to the strong and anisotropic
damping of the sound wave. The relevance of the nematic Fermi liquid in doped
Mott insulator is discussed.Comment: 4 pages, no figur
A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator
We evaluate from first principles the self-consistent Hartree-Fock energies
for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott
insulator on a two-dimensional square lattice. We find that nearest-neighbor
Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton
pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate
coupling 3 < U/t <8. This stabilization is mediated through the generation of
``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes
cloaked by a meron-vortex in the spin-flux AFM background are charged bosons.
Our static Hartree-Fock calculations provide an upper bound on the energy of a
finite density of charged vortices. This upper bound is lower than the energy
of the corresponding charged stripe configurations. A finite density of charge
carrying vortices is shown to produce a large number of unoccupied electronic
levels in the Mott-Hubbard charge transfer gap. These levels lead to
significant band tailing and a broad mid-infrared band in the optical
absorption spectrum as observed experimentally. At very low doping (below 0.05)
the doping charges create extremely tightly bound meron-antimeron pairs or even
isolated conventional spin-polarons, whereas for very high doping (above 0.4)
the spin background itself becomes unstable to formation of a conventional
Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our
results point to the predominance of a quantum liquid of charged, bosonic,
vortex solitons at intermediate coupling and intermediate doping
concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some
figure
Kinetic energy driven superconductivity in doped cuprates
Within the t-J model, the mechanism of superconductivity in doped cuprates is
studied based on the partial charge-spin separation fermion-spin theory. It is
shown that dressed holons interact occurring directly through the kinetic
energy by exchanging dressed spinon excitations, leading to a net attractive
force between dressed holons, then the electron Cooper pairs originating from
the dressed holon pairing state are due to the charge-spin recombination, and
their condensation reveals the superconducting ground-state. The electron
superconducting transition temperature is determined by the dressed holon pair
transition temperature, and is proportional to the concentration of doped holes
in the underdoped regime. With the common form of the electron Cooper pair, we
also show that there is a coexistence of the electron Cooper pair and
antiferromagnetic short-range correlation, and hence the antiferromagnetic
short-range fluctuation can persist into the superconducting state. Our results
are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo
An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model
We have calculated S(q) and the single particle distribution function
for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site
lattice with periodic boundary conditions; we justify the use of this lattice
in compariosn to those of having the full square symmetry of the bulk. This new
cluster has a high density of vec k points along the diagonal of reciprocal
space, viz. along k = (k,k). The results clearly demonstrate that when the
single hole problem has a ground state with a system momentum of vec k =
(pi/2,pi/2), the resulting ground state for N holes involves a shift of the
peak of the system's structure factor away from the antiferromagnetic state.
This shift effectively increases continuously with N. When the single hole
problem has a ground state with a momentum that is not equal to k =
(pi/2,pi/2), then the above--mentioned incommensurability for N holes is not
found. The results for the incommensurate ground states can be understood in
terms of rigid--band filling: the effective occupation of the single hole k =
(pi/2,pi/2) states is demonstrated by the evaluation of the single particle
momentum distribution function . Unlike many previous studies, we show
that for the many hole ground state the occupied momentum states are indeed k =
(+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include
Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa
Calonectria pauciramosa is a pathogen of numerous plant hosts worldwide. Recent studies have indicated that it included cryptic species, some of which are identified in this study. Isolates from various geographical origins were collected and compared based on morphology, DNA sequence data of the ß-tubulin, histone H3 and translation elongation factor-1 regions and mating compatibility. Comparisons of the DNA sequence data and mating compatibility revealed three new species. These included Ca. colombiana sp. nov. from Colombia, Ca. polizzii sp. nov. from Italy and Ca. zuluensis sp. nov. from South Africa, all of which had distinguishing morphological features. Based on DNA sequence data, Ca. brasiliensis is also elevated to species leve
Transport Properties near the z=2 Insulator-Superconductor Transition
We consider here the fluctuation conductivity near the point of the
insulator-superconductor transition in a system of regular Josephson junction
arrays in the presence of particle-hole asymmetry or equivalently homogeneous
charge frustration. The transition is characterised by the dynamic critical
exponent , opening the possibility of the perturbative
renormalization-group (RG) treatment. The quartic interaction in the
Ginzburg-Landau action and the coupling to the Ohmic heat bath, giving the
finite quasiparticle life-time, lead to the non-monotonic behavior of the dc
conductivity as a function of temperature in the leading logarithmic
approximation.Comment: Revised version for publication. To appear in PR
Cladosporium leaf-blotch and stem rot of Paeonia spp. caused by Dichocladosporium chlorocephalum gen. nov.
Cladosporium chlorocephalum (= C. paeoniae) is a common,
widespread leaf-spotting hyphomycete of peony (Paeonia spp.),
characterised by having dimorphic conidiophores. During the season, one stage
of this fungus causes distinct, necrotic leaf-blotch symptoms on living leaves
of Paeonia spp. In late autumn, winter or after overwintering, a
second morphologically distinct conidiophore type occurs on dead, blackish,
rotting stems. Conspecificity of the two morphs, previously proposed on the
basis of observations in culture, was supported by DNA sequence data from the
ITS and LSU gene regions, using cultures obtained from leaf-blotch symptoms on
living leaves, as well as from dead stems of Paeonia spp. Sequence
data were identical, indicating a single species with two morphs. On account
of its distinct conidiogenous loci and conidial hila, as well as its
sequence-based phylogenetic position separate from the
Davidiella/Cladosporium clade, the peony fungus has to be excluded
from Cladosporium s. str., but still belongs to the
Davidiellaceae (Capnodiales). The leaf-blotching
(cladosporioid) morph of this fungus morphologically resembles species of
Fusicladium, but differs in having dimorphic fruiting, and is
phylogenetically distant from the Venturiaceae. The macronematous
(periconioid) morph resembles Metulocladosporiella (Chaetothyriales),
but lacks rhizoid conidiophore hyphae, and has 0-5-septate conidia. Hence,
C. chlorocephalum is assigned to the new genus
Dichocladosporium
- …