19 research outputs found

    A genetic map of 1,000 SSR and DArT markers in a wide barley cross

    No full text
    The original publication can be found at www.springerlink.comA high-density genetic map was developed from an F1-derived doubled haploid population generated from a cross between cultivated barley (Hordeum vulgare) and the subspecies H. vulgare ssp. spontaneum. The map comprises 1,000 loci, amplified using 536 SSR (558 loci) and 442 DArT markers. Of the SSRs, 149 markers (153 loci) were derived from barley ESTs, and 7 from wheat ESTs. A high level of polymorphism (∼70%) was observed, which facilitated the mapping of 197 SSRs for which genetic assignments had not been previously reported. Comparison with a published composite map showed a high level of co-linearity and telomeric coverage on all seven chromosomes. This map provides access to previously unmapped SSRs, improved genome coverage due to the integration of DArT and EST-SSRs and overcomes locus order issues of composite maps constructed from the alignment of several genetic maps

    Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon.

    No full text
    The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding
    corecore