9,839 research outputs found

    Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, Podarcis erhardii.

    Get PDF
    This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/ece3.1650Animal coloration is strikingly diverse in nature. Within-species color variation can arise through local adaptation for camouflage, sexual dimorphism and conspicuous sexual signals, which often have conflicting effects on survival. Here, we tested whether color variation between two island populations of Aegean wall lizards (Podarcis erhardii) is due to sexual dimorphism and differential survival of individuals varying in appearance. On both islands, we measured attack rates by wild avian predators on clay models matching the coloration of real male and female P. erhardii from each island population, modeled to avian predator vision. Avian predator attack rates differed among model treatments, although only on one island. Male-colored models, which were more conspicuous against their experimental backgrounds to avian predators, were accordingly detected and attacked more frequently by birds than less conspicuous female-colored models. This suggests that female coloration has evolved primarily under selection for camouflage, whereas sexually competing males exhibit costly conspicuous coloration. Unexpectedly, there was no difference in avian attack frequency between local and non-local model types. This may have arisen if the models did not resemble lizard coloration with sufficient precision, or if real lizards behaviorally choose backgrounds that improve camouflage. Overall, these results show that sexually dimorphic coloration can affect the risk of predator attacks, indicating that color variation within a species can be caused by interactions between natural and sexual selection. However, more work is needed to determine how these findings depend on the island environment that each population inhabits.This work was supported by a Biotechnology and Biological Sciences Research Council studentship, Magdalene College, Cambridge and the British Herpetological Society (K.L.A.M), and a Biotechnology and Biological Sciences Research Council and David Philips Research Fellowship (grant number BB/G022887/1) to M.S

    Microhabitat choice in island lizards enhances camouflage against avian predators.

    Get PDF
    This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep19815Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island. This suggests that P. erhardii make background choices that heighten individual-specific concealment. In achromatic camouflage, this effect was more evident in females and was less distinct in an island population with lower predation risk. This suggests that behavioural enhancement of camouflage may be more important in females than in sexually competing males and related to predation risk. However, in an arena experiment, lizards did not choose the background that improved camouflage, most likely due to the artificial conditions. Overall, our results provide evidence that behavioural preferences for substrates can enhance individual camouflage of lizards in natural microhabitats, and that such adaptations may be sexually dimorphic and dependent on local environments. This research emphasizes the importance of considering links between ecology, behaviour, and appearance in studies of intraspecific colour variation and local adaptation.This work was supported by a Biotechnology and Biological Sciences Research Council studentship, by the British Herpetological Society and Magdalene College, Cambridge (K.L.A.M), and by a Biotechnology and Biological Sciences Research Council and David Philips Research Fellowship (grant number BB/G022887/1) to M.

    Oyster Reefs in Northern Gulf of Mexico Estuaries Harbor Diverse Fish and Decapod Crustacean Assemblages: A Meta-Synthesis

    Get PDF
    Oyster reefs provide habitat for numerous fish and decapod crustacean species that mediate ecosystem functioning and support vibrant fisheries. Recent focus on the restoration of eastern oyster (Crassostrea virginica) reefs stems from this role as a critical ecosystem engineer. Within the shallow estuaries of the northern Gulf of Mexico (nGoM), the eastern oyster is the dominant reef building organism. This study synthesizes data on fish and decapod crustacean occupancy of oyster reefs across nGoM with the goal of providing management and restoration benchmarks, something that is currently lacking for the region. Relevant data from 23 studies were identified, representing data from all five U.S. nGoM states over the last 28 years. Cumulatively, these studies documented over 120,000 individuals from 115 fish and 41 decapod crustacean species. Densities as high as 2,800 ind m(-2) were reported, with individual reef assemblages composed of as many as 52 species. Small, cryptic organisms that occupy interstitial spaces within the reefs, and sampled using trays, were found at an average density of 647 and 20 ind m(-2) for decapod crustaceans and fishes, respectively. Both groups of organisms were comprised, on average, of 8 species. Larger-bodied fishes captured adjacent to the reef using gill nets were found at an average density of 6 ind m(-2), which came from 23 species. Decapod crustaceans sampled with gill nets had a much lower average density, \u3c1 ind m(-2), and only contained 2 species. On average, seines captured the greatest number of fish species (n = 33), which were made up of both facultative residents and transients. These data provide general gear-specific benchmarks, based on values currently found in the region, to assist managers in assessing nekton occupancy of oyster reefs, and assessing trends or changes in status of oyster reef associated nekton support. More explicit reef descriptions (e.g., rugosity, height, area, adjacent habitat) would allow for more precise benchmarks as these factors are important in determining nekton assemblages, and sampling efficiency

    Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage.

    Get PDF
    This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/ 10.1371/journal.pone.0135241Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.This work was supported by a Biotechnology and Biological Sciences Research Council studentship (www.BBSRC.com), the British Herpetological Society (www.thebhs.org), the Cambridge Philosophical Society (http://www.cambridgephilosophicalsociety.org) and Magdalene College, Cambridge (to KLAM), and a Biotechnology and Biological Sciences Research Council and David Philips Research Fellowship (grant number BB/G022887/1) to MS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

    Full text link
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter -radiation interaction are illustrated in a simple relativistic classical electromagnetic example.Comment: 18 page

    Oyster Reefs in Northern Gulf of Mexico Estuaries Harbor Diverse Fish and Decapod Crustacean Assemblages: A Meta-Synthesis

    Get PDF
    Oyster reefs provide habitat for numerous fish and decapod crustacean species that mediate ecosystem functioning and support vibrant fisheries. Recent focus on the restoration of eastern oyster (Crassostrea virginica) reefs stems from this role as a critical ecosystem engineer. Within the shallow estuaries of the northern Gulf of Mexico (nGoM), the eastern oyster is the dominant reef building organism. This study synthesizes data on fish and decapod crustacean occupancy of oyster reefs across nGoM with the goal of providing management and restoration benchmarks, something that is currently lacking for the region. Relevant data from 23 studies were identified, representing data from all five U.S. nGoM states over the last 28 years. Cumulatively, these studies documented over 120,000 individuals from 115 fish and 41 decapod crustacean species. Densities as high as 2,800 ind m−2 were reported, with individual reef assemblages composed of as many as 52 species. Small, cryptic organisms that occupy interstitial spaces within the reefs, and sampled using trays, were found at an average density of 647 and 20 ind m−2 for decapod crustaceans and fishes, respectively. Both groups of organisms were comprised, on average, of 8 species. Larger-bodied fishes captured adjacent to the reef using gill nets were found at an average density of 6 ind m−2, which came from 23 species. Decapod crustaceans sampled with gill nets had a much lower average density, \u3c1 ind m−2, and only contained 2 species. On average, seines captured the greatest number of fish species (n = 33), which were made up of both facultative residents and transients. These data provide general gear-specific benchmarks, based on values currently found in the region, to assist managers in assessing nekton occupancy of oyster reefs, and assessing trends or changes in status of oyster reef associated nekton support. More explicit reef descriptions (e.g., rugosity, height, area, adjacent habitat) would allow for more precise benchmarks as these factors are important in determining nekton assemblages, and sampling efficiency

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio

    Post-LASIK exacerbation of granular corneal dystrophy type 2 in members of a chinese family

    Get PDF
    PurposeThe post-LASIK exacerbation of corneal dystrophy, otherwise asymptomatic, is almost exclusively associated with the TGFBI gene mutations at codon 124 in exon 4 and codon 555 in exon 12. It is our intention to demonstrate that the pre-operative genetic screening for TGFBI mutations should be mandatory for refractive surgery candidates.Patients and MethodsIn this study, we reviewed the proband's post-LASIK slit-lamp and in vivo confocal microscopy images and genetic testing results, and performed genetic testing on eleven additional members of the family to investigate the penetrance of corneal dystrophy in asymptomatic members who carry the mutation.ResultsThe proband demonstrated a post-LASIK exacerbation of Granular Corneal Dystrophy type 2 (GCD2), identified as a TGFBI R124H mutation. Three of the 11 family members tested positive for the same R124H mutation as the proband.ConclusionThe lesson learned from this case is that the genetic screening of TGFBI mutations must be incorporated into the pre-operative screening procedures to prevent exacerbation and recurrence, which eventually could lead to the need for a corneal transplant.Eye advance online publication, 1 December 2017; doi:10.1038/eye.2017.265

    Pulsed quantum optomechanics

    Full text link
    Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.Comment: 9 pages, 4 figure
    • 

    corecore