272 research outputs found

    Well-defined side-chain liquid-crystalline polysiloxanes

    Get PDF
    A route to well-defined side-chain liquid-crystalline polysiloxanes (ratio of weight-to number-average molar masses Mw/Mn < 1.2 is reported. Anionic ring-opening polymerization of pentamethylvinylcyclotrisiloxane yielded a poly(dimethylsiloxane-co-methylvinylsiloxane) backbone. A flexible disiloxane spacer was used to connect 4-(ω-alkenyloxy)-4'-cyanobiphenyl mesogenic molecules to the vinyl groups which belong to the backbone, leading to a side-chain liquid-crystalline polysiloxane (SCLCP) which has its mesogens distributed regularly along the main chain. Preliminary measurements indicate an electro-optic switching time s = 1 min at 20°C and 7 s at 32°C (dc, 5 V/µm))

    Introducing pattern graph rewriting in novel spatial aggregation procedures for a class of traffic assignment models

    Get PDF
    In this study two novel spatial aggregation methods are presented compatible with a class of traffic assignment models. Both methods are formalized using a category theoretical approach. While this type of formalization is new to the field of transport, it is well known in other fields that require tools to allow for reasoning on complex structures. The method presented stems from a method originally developed to deal with quantum physical processes. The first benefit of adopting this formalization technique is that it provides an intuitive graphical representation while having a rigorous mathematical underpinning. Secondly, it bears close resemblances to regular expressions and functional programming techniques giving insights in how to potentially construct solvers (i.e. algorithms). The aggregation methods proposed in this paper are compatible with traffic assignment procedures utilising a path travel time function consisting out of two components, namely (i) a flow invariant component representing free flow travel time, and (ii) a flow dependent component representing queuing delays. By exploiting the fact that, in practice, most large scale networks only have a small portion of the network exhibiting queuing delays, this method aims at decomposing the network into a constant free flowing part to compute once and a, much smaller, demand varying delay part that requires recomputation across demand scenarios. It is demonstrated that under certain conditions this procedure is lossless. On top of the decomposition method, a path set reduction method is proposed. This method reduces the path set to the minimal path set which further decreases computational cost. A large scale case study is presented to demonstrate the proposed methods can reduce computation times to less than 5% of the original without loss of accuracy

    An efficient event‐based algorithm for solving first order dynamic network loading problems

    Get PDF
    In this paper we will present a novel solution algorithm for the Generalised Link Transmission Model (G-LTM). It will utilise a truly event based approach supporting the generation of exact results, unlike its time discretised counterparts. Furthermore, it can also be configured to yield approximate results, when this approach is adopted its computational complexity decreases dramatically. It will be demonstrated on a theoretical as well as a real world network that when utilising fixed periods of stationary demands to mimic departure time demand fluctuations, this novel approach can be efficient while maintaining a high level of result accuracy. The link model is complemented by a generic node model formulation yielding a proper generic first order DNL solution algorithm

    A lossless spatial aggregation procedure for a class of capacity constrained traffic assignment models incorporating point queues

    Get PDF
    In this paper two novel spatial aggregation procedures are proposed. A network aggregation procedure based on a travel time delay decomposition method and a zonal aggregation procedure based on a path redistribution scheme. The effectiveness of these procedures lies in the fact that they, unlike existing aggregation methods, exploit available information regarding the application context and the characteristics of the adopted traffic assignment procedure. The context considered involves all applications that require path and inter-zonal travel times as output. A typical example of such applications are quick-scan methods, which have become increasing popular in recent years. The proposed procedures are compatible with a class of traffic assignment procedures incorporating (residual) point queues. Furthermore, one can choose to combine network aggregation with zonal aggregation to increase the effectiveness of the procedure. Results are demonstrated via theoretical examples as well as a large-scale case study. In the case study it is shown that network loading times can be reduced to as little as 4% of the original situation without suffering any information loss

    Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla

    Get PDF
    Background: Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers.&lt;p&gt;&lt;/p&gt; Methods: ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning.&lt;p&gt;&lt;/p&gt; Results: 12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%.&lt;p&gt;&lt;/p&gt; Conclusions: ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.&lt;p&gt;&lt;/p&gt

    Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part I: design and performance analysis

    Get PDF
    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband delays, and coherent optical combining. The electro-optical conversion is performed by means of single-sideband suppressed carrier modulation, employing a common laser, Mach-Zehnder modulators, and a common optical sideband filter after the OBFN. The unmodulated laser signal is then re-injected in order to perform balanced coherent optical detection, for the opto-electrical conversion. This scheme minimizes the requirements on the complexity of the OBFN, and has potential for compact realization by means of full integration on chip. The impact of the optical beamformer concept on the performance of the full receiver system is analyzed, by modeling the combination of the PAA and the beamformer as an equivalent two-port RF system. The results are illustrated by a numerical example of a PAA receiver for satellite TV reception, showing that—when properly designed—the beamformer hardly affects the sensitivity of the receiver

    Six-minute walk distance after coronary artery bypass grafting compared with medical therapy in ischaemic cardiomyopathy

    Get PDF
    Background: In patients with ischaemic left ventricular dysfunction, coronary artery bypass surgery (CABG) may decrease mortality, but it is not known whether CABG improves functional capacity. Objective: To determine whether CABG compared with medical therapy alone (MED) increases 6 min walk distance in patients with ischaemic left ventricular dysfunction and coronary artery disease amenable to revascularisation. Methods: The Surgical Treatment in Ischemic Heart disease trial randomised 1212 patients with ischaemic left ventricular dysfunction to CABG or MED. A 6 min walk distance test was performed both at baseline and at least one follow-up assessment at 4, 12, 24 and/or 36 months in 409 patients randomised to CABG and 466 to MED. Change in 6 min walk distance between baseline and follow-up were compared by treatment allocation. Results: 6 min walk distance at baseline for CABG was mean 340±117 m and for MED 339±118 m. Change in walk distance from baseline was similar for CABG and MED groups at 4 months (mean +38 vs +28 m), 12 months (+47 vs +36 m), 24 months (+31 vs +34 m) and 36 months (−7 vs +7 m), P&gt;0.10 for all. Change in walk distance between CABG and MED groups over all assessments was also similar after adjusting for covariates and imputation for missing values (+8 m, 95% CI −7 to 23 m, P=0.29). Results were consistent for subgroups defined by angina, New York Heart Association class ≥3, left ventricular ejection fraction, baseline walk distance and geographic region. Conclusion: In patients with ischaemic left ventricular dysfunction CABG compared with MED alone is known to reduce mortality but is unlikely to result in a clinically significant improvement in functional capacity

    A unified framework for traffic assignment: deriving static and quasi‐dynamic models consistent with general first order dynamic traffic assignment models

    Get PDF
    This paper presents a theoretical framework to derive static, quasi-dynamic, and semi-dynamic traffic assignment models from a general first order dynamic traffic assignment model. By explicit derivation from a dynamic model, the resulting models maintain maximum consistency with dynamic models. Further, the derivations can be done with any fundamental diagram, any turn flow restrictions, and deterministic or stochastic route choice. We demonstrate the framework by deriving static (quasidynamic) models that explicitly take queuing and spillback into account. These models are generalisations of models previously proposed in the literature. We further discuss all assumptions usually implicitly made in the traditional static traffic assignment model

    Capacity constrained stochastic static traffic assignment with residual point queues incorporating a proper node model

    Get PDF
    Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts in the literature to add capacity constraints to obtain more realistic traffic flows and bottleneck locations, but so far there has not been a satisfactory model formulation. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a proper node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in which we include a first order node model that yields realistic turn capacities, which are then used to determine consistent traffic flows and residual point queues. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks
    corecore