125 research outputs found

    Myelin pathology: Involvement of molecular chaperones and the promise of chaperonotherapy

    Get PDF
    The process of axon myelination involves various proteins including molecular chaperones. Myelin alteration is a common feature in neurological diseases due to structural and functional abnormalities of one or more myelin proteins. Genetic proteinopathies may occur either in the presence of a normal chaperoning system, which is unable to assist the defective myelin protein in its folding and migration, or due to mutations in chaperone genes, leading to functional defects in assisting myelin maturation/migration. The latter are a subgroup of genetic chaperonopathies causing demyelination. In this brief review, we describe some paradigmatic examples pertaining to the chaperonins Hsp60 (HSPD1, or HSP60, or Cpn60) and CCT (chaperonin-containing TCP-1). Our aim is to make scientists and physicians aware of the possibility and advantages of classifying patients depending on the presence or absence of a chaperonopathy. In turn, this subclassification will allow the development of novel therapeutic strategies (chaperonotherapy) by using molecular chaperones as agents or targets for treatment

    Curcumin affects HSP60 folding activity and levels in neuroblastoma cells

    Get PDF
    The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial\u2013mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 \ub5M of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 \ub5M. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 \ub5M of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin

    The Major Heat Shock Proteins, Hsp70 and Hsp90, in 2-Methoxyestradiol-Mediated Osteosarcoma Cell Death Model

    Get PDF
    2-Methoxyestradiol is one of the natural 17β-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin

    EXOSOMES: CAN DOCTORS STILL IGNORE THEIR EXISTENCE?

    Get PDF
    With this invited commentary we want to draw the attention of young medical doctors, the main readers of this journal, towards the existence and importance of a group of nanovesicles released by human cells: the exosomes. These vesicles are incontinently se-creted as a mean of cell-to-cell communication. They are involved in a number of physiol-ogic processes as well as in the pathogenesis of, virtually, all human diseases. They can be isolated from all biological fluids, like blood, urine, sweat, sperm, crevicular fluid, bile, etc., and their composition in terms of proteins, RNA and lipids is different in pathology that in physiologic conditions. It is therefore possible to predict that they will become an important diagnostic and therapeutic tool in medicine

    Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders?

    Get PDF
    Many individuals who have severe forms of COVID-19 experience a suite of neurovegetative signs and symptoms (eg, tachycardia) after their recovery, suggesting that the imbalance of the sympathetic-parasympathetic activity of the autonomic nervous system1 could continue for many weeks or months after respiratory symptoms stop. Moreover, a reduction of the parasympathetic tone could have a role in restricting the cholinergic anti-inflammatory pathway, thus favouring hyperinflammation and cytokine storm in the most severe phases of the disease. As reported by Guglielmo Lucchese in The Lancet Microbe,2 SARS-CoV-2 can damage the nervous system via an indirect mechanism, resulting in a high prevalence of autoantibodies, mainly against unknown autoantigens in the brain, in cerebrospinal fluid from patients with neurological complications.2 The cause of low vagal tone and SARS-CoV-2 has not yet been investigated sufficiently and here we would like to share some original data supporting the putative role of molecular mimicry as the culprit of COVID-19 pathogenesis, including the post-COVID-19 neurovegetative syndrome.2, 3, 4, 5 Using methods that have been previously described,3 we looked specifically at the human proteins expressed in vagal nuclei and ganglia. As shown in the appendix (pp 1–2), we found that 22 of these proteins share peptides that could putatively generate a T-cell or B-cell driven autoimmune response. The location and function of these proteins are described in the appendix (pp 3–24). Fibres of the vagal nerve originate from four nuclei located in the medulla oblongata—ie, the dorsal motor nucleus, the nucleus ambiguus, the solitary nucleus, and, to a lesser extent, the spinal trigeminal nucleus. These fibres contribute to the somatic and visceral motricity, somatic and visceral sensibility, and the sense of taste. The visceral motor inputs originate specifically from the dorsal motor nucleus and nucleus ambiguus and are directed towards the heart, the airways, and the gastrointestinal system. Moreover, the vagal visceral innervation includes two sensory ganglia of the peripheral nervous system—the nodose ganglion and the jugular ganglion. In particular, peripheral fibres of the neurons of the nodose ganglion not only innervate the taste buds on the epiglottis, the chemoreceptors of the aortic bodies, and baroreceptors in the aortic arch, but they also provide sensory innervation to the circulatory, respiratory, and gastrointestinal systems. An impairment of the vagal innervation of the heart can lead to tachycardia at rest, which is often seen by clinicians during physical examination of patients who have recovered from a severe form of COVID-19.1 We found that the dorsal motor nucleus, nucleus ambiguus, nodose ganglion, and jugular ganglion can all host neurons presenting proteins with epitopes in common with SARS-CoV-2 proteins, and the peptide TGRLQSL is embedded in one immunoreactive linear epitope that has already been experimentally validated in the human host (Immune Epitope Database and Analysis Resource identification number 36724) to be able to generate an autoimmune response. We share our findings to prompt further studies assessing whether severe forms of COVID-19 could produce transitory or permanent damage in some vagal structure and whether this can, in turn, be responsible for the low vagal tone and the related clinical signs and symptoms

    Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells

    Get PDF
    Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients

    Data mining-based statistical analysis of biological data uncovers hidden significance: clustering Hashimoto’s thyroiditis patients based on the response of their PBMC with IL-2 and IFN-γ secretion to stimulation with Hsp60

    Get PDF
    The pathogenesis of Hashimoto’s thyroiditis includes autoimmunity involving thyroid antigens, autoantibodies, and possibly cytokines. It is unclear what role plays Hsp60, but our recent data indicate that it may contribute to pathogenesis as an autoantigen. Its role in the induction of cytokine production, pro- or anti-inflammatory, was not elucidated, except that we found that peripheral blood mononucleated cells (PBMC) from patients or from healthy controls did not respond with cytokine production upon stimulation by Hsp60 in vitro with patterns that would differentiate patients from controls with statistical significance. This “negative” outcome appeared when the data were pooled and analyzed with conventional statistical methods. We re-analyzed our data with non-conventional statistical methods based on data mining using the classification and regression tree learning algorithm and clustering methodology. The results indicate that by focusing on IFN-γ and IL-2 levels before and after Hsp60 stimulation of PBMC in each patient, it is possible to differentiate patients from controls. A major general conclusion is that when trying to identify disease markers such as levels of cytokines and Hsp60, reference to standards obtained from pooled data from many patients may be misleading. The chosen biomarker, e.g., production of IFN-γ and IL-2 by PBMC upon stimulation with Hsp60, must be assessed before and after stimulation and the results compared within each patient and analyzed with conventional and data mining statistical methods

    Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders

    Get PDF
    Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin-proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS-heat shock protein (Hsp)60, Hsp70, and Hsp90-in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration

    DNA strand breaks induced by nuclear hijacking of neuronal NOS as an anti-cancer effect of 2-methoxyestradiol

    Get PDF
    2-Methoxyestradiol (2-ME) is a physiological metabolite of 17β-estradiol. At pharmacological concentrations, 2-ME inhibits colon, breast and lung cancer in tumor models. Here we investigated the effect of physiologically relevant concentrations of 2-ME in osteosarcoma cell model. We demonstrated that 2-ME increased nuclear localization of neuronal nitric oxide synthase, resulting in nitro-oxidative DNA damage. This in turn caused cell cycle arrest and apoptosis in osteosarcoma cells. We suggest that 2-ME is a naturally occurring hormone with potential anti-cancer properties

    Medial tunica degeneration of the ascending aortic wall is associated with specific microRNA changes in bicuspid aortic valve disease

    Get PDF
    Ascending aortic diameter is not an accurate parameter for surgical indication in patients with bicuspid aortic valve (BAV). Thus, the present study aimed to identify specific microRNAs (miRNAs/miRs) and their expression levels in aortic wall aneurysm associated with BAV according to severity of medial degeneration and to elucidate the association between the tissue expression levels of the miRNAs with their expression in plasma. Aortic wall and blood specimens were obtained from 38 patients: 12 controls and 26 patients with BAV with ascending aortic aneurysm. Of the patients with BAV, 19 had cusp fusions of right and left, 5 of right and non-coronary, and 2 of left and non-coronary. Two groups of patients were identified according to the grade of medial degeneration (MD): Low-grade D group (LGMD) and high-grade MD group (HGMD). Expression level of miR-122, miR-130, miR-718 and miR-486 were validated by reverse transcription-quantitative PCR in plasma and tissue samples. MD grade was found to be independent from the BAV phenotype. The HGD group showed increased expression levels of MMP-9 and MMP-2, and an increase in the number of apoptotic cells. Tissue expression levels of miR-718 and miR-122 were lower in the LGMD and HGD groups compared with expression in the control group; the HGD group showed increased levels of miR-486. Plasma expression levels of miR-122 were decreased in the LGMD and HGD groups, and miR-718 was only reduced in the HGD group. On the contrary, expression of miR-486 was increased in the LGMD and HGD groups. The data suggested that miR-486 may be considered as a non-invasive biomarker of aortic wall degeneration. Dysregulation of this putative biomarker may be associated with high risk of dissection and rupture in patients with BAV
    • …
    corecore