2,461 research outputs found
Catalog of lunar mission data
Several series of spacecraft were developed, designed, built and launched to determine different characteristics of the lunar surface and environment for a manned landing. Both unmanned and manned spacecrafts, spacecraft equipment and lunar missions are documented
Crossover from 2-dimensional to 1-dimensional collective pinning in NbSe3
We have fabricated NbSe structures with widths comparable to the
Fukuyama-Lee-Rice phase-coherence length. For samples already in the
2-dimensional pinning limit, we observe a crossover from 2-dimensional to
1-dimensional collective pinning when the crystal width is less than 1.6
m, corresponding to the phase-coherence length in this direction. Our
results show that surface pinning is negligible in our samples, and provide a
means to probe the dynamics of single domains giving access to a new regime in
charge-density wave physics.Comment: 4 pages, 2 figures, and 1 table. Accepted for publication in Physical
Review
A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape
Landscape features of anthropogenic or natural origin can influence organisms\u27 dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape
Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria
Dose and schedule-finding study of oral topotecan and weekly cisplatin in patients with recurrent ovarian cancer
Both weekly cisplatin chemotherapy and single agent topotecan have proven to be effective in recurrent ovarian cancer. Preclinical data show synergism between cisplatin and topotecan. Side effects for this combination are drug sequence dependent and predominantly haematologic. Since preclinical data suggest that Cremophor EL (CrEL), the formulation vehicle of paclitaxel, has a protective effect on haematological toxicity of cisplatin, CrEL was added to the combination cisplatin and topotecan. In this phase I study, escalating doses of oral topotecan administered on day 1, 2, 8, 9, 15, 16, 29, 30, 36, 37, 43, 44 were combined with weekly cisplatin 70 mg m−2d−1on day 1, 8, 15, 29, 36, 43 (scheme A) or with the presumably less myelotoxic sequence weekly cisplatin day 2, 9, 16, 30, 37, 44 (scheme B). In scheme C, CrEL 12 ml was administered prior to cisplatin in the sequence of Scheme A. 18 patients have received a total of 85 courses. In scheme A 4/10 patients, all treated with topotecan 0.45 mg m−2d−1, experienced DLT: 1 patient had vomiting grade 4, 1 patient had grade 4 neutropenia >5 days, 1 patient had >2 weeks delay due to thrombocytopenia and 1 patient due to neutropenia. Both patients in scheme B (topotecan 0.45 mg m−2d−1) had DLT due to a delay > 2 weeks because of prolonged haematological toxicity. No DLT was observed in the first 3 patients in scheme C (topotecan 0.45 mg m−2d−1). However, 2 out of 3 patients treated at dose level topotecan 0.60 mg m−2d−1in scheme C experienced DLT due to >2 weeks delay because of persistent thrombocytopenia or neutropenia. We conclude that there is a modest clinical effect of CrEL on haematological toxicity for this cisplatin-based combination regimen, which seems to reduce these side effects but does not really enable an increase of the oral topotecan dose. © 2001 Cancer Research Campaign http://www.bjcancer.co
Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions
Morphometric similarity networks (MSNs) estimate organization of the cortex as a biologically meaningful set of similarities between anatomical features at the macro-and microstructural level, derived from multiple structural MRI (sMRI) sequences. These networks are clinically relevant, predicting 40% variance in IQ. However, the sequences required (T1w, T2w, DWI) to produce these networks are longer acquisitions, less feasible in some populations. Thus, estimating MSNs using features from T1w sMRI is attractive to clinical and developmental neuroscience. We studied whether reduced-feature approaches approximate the original MSN model as a potential tool to investigate brain structure. In a large, homogenous dataset of healthy young adults (from the Human Connectome Project, HCP), we extended previous investigations of reduced-feature MSNs by comparing not only T1w-derived networks, but also additional MSNs generated with fewer MR sequences, to their full acquisition counterparts. We produce MSNs that are highly similar at the edge level to those generated with multimodal imaging; however, the nodal topology of the networks differed. These networks had limited predictive validity of generalized cognitive ability. Overall, when multimodal imaging is not available or appropriate, T1w-restricted MSN construction is feasible, provides an appropriate estimate of the MSN, and could be a useful approach to examine outcomes in future studies
Molecular Biomarkers of Neovascular Age-Related Macular Degeneration With Incomplete Response to Anti-Vascular Endothelial Growth Factor Treatment.
The standard treatment for neovascular age-related macular degeneration (nAMD) consists of intravitreal anti-vascular endothelial growth factors (VEGF). However, for some patients, even maximal anti-VEGF treatment does not entirely suppress exudative activity. The goal of this study was to identify molecular biomarkers in nAMD with incomplete response to anti-VEGF treatment. Aqueous humor (AH) samples were collected from three groups of patients: 17 patients with nAMD responding incompletely to anti-VEGF (18 eyes), 17 patients affected by nAMD with normal treatment response (21 eyes), and 16 control patients without any retinopathy (16 eyes). Proteomic and multiplex analyses were performed on these samples. Proteomic analyses showed that nAMD patients with incomplete anti-VEGF response displayed an increased inflammatory response, complement activation, cytolysis, protein-lipid complex, and vasculature development pathways. Multiplex analyses revealed a significant increase of soluble vascular cell adhesion molecule-1 (sVCAM-1) [ p = 0.001], interleukin-6 (IL-6) [ p = 0.009], bioactive interleukin-12 (IL-12p40) [ p = 0.03], plasminogen activator inhibitor type 1 (PAI-1) [ p = 0.004], and hepatocyte growth factor (HGF) [ p = 0.004] levels in incomplete responders in comparison to normal responders. Interestingly, the same biomarkers showed a high intercorrelation with r2 values between 0.58 and 0.94. In addition, we confirmed by AlphaLISA the increase of sVCAM-1 [ p < 0.0001] and IL-6 [ p = 0.043] in the incomplete responder group. Incomplete responders in nAMD are associated with activated angiogenic and inflammatory pathways. The residual exudative activity of nAMD despite maximal anti-VEGF treatment may be related to both angiogenic and inflammatory responses requiring specific adjuvant therapy. Data are available via ProteomeXchange with identifier PXD02247
Genomic analysis reveals neutral and adaptive patterns that challenge the current management regime for East Atlantic cod Gadus morhua L
Challenging long‐held perceptions of fish management units can help to protect vulnerable stocks. When a fishery consisting of multiple genetic stocks is managed as a single unit, overexploitation and depletion of minor genetic units can occur. Atlantic cod (Gadus morhua) is an economically and ecologically important marine species across the North Atlantic. The application of new genomic resources, including SNP arrays, allows us to detect and explore novel structure within specific cod management units. In Norwegian waters, coastal cod (i.e. those not undertaking extensive migrations) are divided into two arbitrary management units defined by ICES: one between 62° and 70°N (Norwegian coastal cod; NCC) and one between 58° and 62°N (Norwegian coastal south; NCS). Together, these capture a fishery area of >25,000 km2 containing many spawning grounds. To assess whether these geographic units correctly represent genetic stocks, we analysed spawning cod of NCC and NCS for more than 8,000 SNPs along with samples of Russian White Sea cod, north‐east Arctic cod (NEAC: the largest Atlantic stock), and outgroup samples representing the Irish and Faroe Sea's. Our analyses revealed large differences in spatial patterns of genetic differentiation across the genome and revealed a complex biological structure within NCC and NCS. Haplotype maps from four chromosome sets show regional specific SNP indicating a complex genetic structure. The current management plan dividing the coastal cod into only two management units does not accurately reflect the genetic units and needs to be revised. Coastal cod in Norway, while highly heterogenous, is also genetically distinct from neighbouring stocks in the north (NEAC), west (Faroe Island) and the south. The White Sea cod are highly divergent from other cod, possibly yielding support to the earlier notion of subspecies rank.publishedVersio
Molecular Population Structure for Feral Swine in the United States
Feral swine (Sus scrofa) have invaded most of the United States and continue to expand throughout North America. Given the ecological and economic threats posed by increasing feral swine abundance, it is imperative to develop an understanding of their patterns of natural range expansion and human-mediated introductions. Towards this goal, we used molecular markers to elucidate the genetic structure of feral swine populations throughout the United States and evaluated the association between historical introductions and contemporary patterns of genetic organization. We used STRUCTURE and discriminant analysis of principal components (DAPC) to delineate genetic clusters for 959 individuals genotyped at 88 single nucleotide polymorphism loci. We identified 10 and 12 genetic clusters for the 2 clustering approaches, respectively. We observed strong agreement in clusters across approaches, with both describing clusters having strong geographic association at regional levels reflecting past introduction and range expansion patterns. In addition, we evaluated patterns of isolation by distance to test for and estimate spatial scaling of population structure within western, central, and eastern regions of North America. We found contrasting spatial patterns of genetic relatedness among regions, suggesting differences in the invasion process, likely as a result of regional variation in landscape heterogeneity and the influence of human mediated introductions. Our results indicate that molecular analyses of population genetic structure can provide reliable insights into the invasion processes of feral swine, thus providing a useful basis for management focused on minimizing continued range expansion by this problematic species
- …