2,156 research outputs found
Fuel cell-based cogeneration system covering data centers’ energy needs
The Information and Communication Technology industry has gone in the recent years through a dramatic expansion, driven by many new online (local and remote) applications and services. Such growth has obviously triggered an equally remarkable growth in energy consumption by data centers, which require huge amounts of power not only for IT devices, but also for power distribution units and for air-conditioning systems needed to cool the IT equipment.
This paper is dedicated to the economic and energy performance assessment of a cogeneration system based on a natural gas membrane steam reformer producing a pure hydrogen flow for electric power generation in a polymer electrolyte membrane fuel cell. Heat is recovered from both the reforming unit and the fuel cell in order to supply the needs of an office building located near the data center. In this case, the cooling energy needs of the data center are covered by means of a vapor-compression chiller equipped with a free-cooling unit.
Since the fuel cell’s output is direct current rather than alternate current, the possibility of further improving data centers’ energy efficiency adopting DC-powered data center equipment is also discussed
Hybrid fuel cell-based energy system with metal hydride hydrogen storage for small mobile applications
This paper describes the general architecture of a hybrid energy system, whose main components are a proton exchange membrane fuel cell, a battery pack and an ultracapacitor pack as power sources, and metal hydride canisters as energy storage devices, suitable for supplying power to small mobile non-automotive devices in a flexible and variable way. The first experimental results carried out on a system prototype are described, showing that the extra components, required in order to manage the hybrid system, do not remarkably affect the overall system efficiency, which is always higher than 36% in all the test configurations examined. in fact, the system allows the fuel cell to work most often at quasi-optimal conditions, near its maximum efficiency (i.e. at low/medium loads), because high external loads are met by the combined effort of the fuel cell and the ultracapacitors. For the same reason, the metal hydride storage system can be used also under highly dynamic operating conditions, notwithstanding its usually poor kinetic performance. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved
Olfactory evaluation in obstructive sleep apnoea patients
The sense of smell has a high impact on the quality of life. The aim of the present study was to investigate olfactory dysfunction in patients with obstructive sleep apnoea syndrome (OSAS) and correlate the severity of disease with olfactory dysfunction. The relationships between nasal obstruction, nasal mucociliary cleareance and olfactory tests were also evaluated. Sixty patients with a diagnosis of OSAS were enrolled and underwent olfactory function evaluation. In all patients olfactory performance was tested with the Sniffin’ Sticks method. Mucociliary transport times and anterior rhinomanometry were performed to identify eventual nasal obstruction and deficits in nasal mucociliary clearance. Olfactory dysfunction was present in 22 (36.6%) patients of the study group: of these, hyposmia was present in 19 (86.4%) and anosmia in 3 (13.6%). The mean TDI score in the study group was 30. A strong correlation between the olfactory dysfunction and severity of sleep apnoea measured using the AHI was found. Patients with OSA would seem to have a high incidence of olfactory dysfunction. The degree of olfactory dysfunction appears to be related to the severity of disease. However, other co-factors such as nasal obstruction and reduced mucociliary clearance might also play a role in of the aetiology of this condition
Impact and costs of proposed scenarios for power sector decarbonisation: An Italian case study
In the face of ever more ambitious global energy challenges, the European Union has set striving climate targets for 2030, planning to increase renewable energy penetration in the electricity generation as a key measure towards a clean energy transition. To respond to the challenge of keeping the increase in power sector costs, that inevitably arises when a profound reconfiguration of the electricity generation sector is expected, to the lowest possible, this paper aims to quantify the economic burden associated with the reduction of direct CO2 emissions through a comparative assessment of various alternatives proposed for 2030 ranked in terms of their cost-effectiveness. A sensitivity analysis is also applied to the main economic and energy parameters that make up CO2 mitigation costs to include those uncertainties that characterise future projections. The impact of electricity generation shares on CO2 mitigation costs is assessed thus providing a basis for the definition of alternative configurations for the Italian electricity sector capable to achieve the desired environmental performance with a limited economic impact. Finally, results reveal that those scenarios based largely on natural gas and solar source are characterized by high mitigation costs, while energy efficiency is essential for a virtuous and clean electricity sector along with the use of all available sources in appropriate shares, both renewable and non-renewable, to pursue the highest environmental objectives in a cost-effective manner. Although related to the Italian case, the methodology provided in this study can be applied to any other electricity sector to ultimately evaluate the economic burden arising from possible different configurations
Preliminary study on a kinetic energy recovery system for sailing yachts
This paper presents the preliminary theoretical results obtained on a model of a kinetic energy recovery system for sailing yachts, based on the conversion of wave-induced boat oscillations (heave, pitch and roll) into electric energy by means of a linear generator.
The recovery system is based on a linear generator, with a mass oscillating along the vertical axis and gaining kinetic energy: the resulting mechanical energy can be extracted (by means of electromagnetic damping) and converted into electricity. The oscillating mass incorporates permanent magnets which, moving in proximity of stator windings, generate electric power due to electromagnetic induction.
The device aims at recovering as much kinetic energy as possible from the natural movements of a sailing yacht on the sea, therefore taking the view of a boat as a moving wave energy converter with energy harvesting capability. The boat's motions can be vertical oscillations due to the buoyancy in the presence of sea waves, both when the boat is still or sailing, and rolling and pitching motions originated both by sailing in wavy waters and by the normal boat dynamics due to the sails' propulsion. Linear generators will convert kinetic energy into electrical energy to be used as “green” electricity for any possible application on board.
Preliminary calculations show that a properly configured system could be able to recover approximately 100 W under most sea conditions on an almost continuous basis, which can be an extremely attractive result since an electric energy availability of 1–2 kWh on a sailing yacht is of significant interest
- …