335 research outputs found

    Multidimensional image selection and classification system based on visual feature extraction and scaling

    Get PDF
    Sorting and searching operations used for the selection of test images strongly affect the results of image quality investigations and require a high level of versatility. This paper describes the way that inherent image properties, which are known to have a visual impact on the observer, can be used to provide support and an innovative answer to image selection and classification. The selected image properties are intended to be comprehensive and to correlate with our perception. Results from this work aim to lead to the definition of a set of universal scales of perceived image properties that are relevant to image quality assessments. The initial prototype built towards these objectives relies on global analysis of low-level image features. A multidimensional system is built, based upon the global image features of: lightness, contrast, colorfulness, color contrast, dominant hue(s) and busyness. The resulting feature metric values are compared against outcomes from relevant psychophysical investigations to evaluate the success of the employed algorithms in deriving image features that affect the perceived impression of the images

    Analisi per patologia

    Get PDF

    A comparison of 0.375% ropivacaine psoas compartment block and 2% prilocaine spinal anaesthesia in dogs undergoing tibial plateau levelling osteotomy

    Get PDF
    BACKGROUND: In dogs undergoing routine elective orthopaedic surgeries carried out as same-day surgeries regional anaesthetic techniques (RATs) should aim to produce analgesia but minimising the postoperative motor dysfunction. Our objective was to compare the perioperative analgesic effects and the time to motor recovery between spinal anaesthesia (SA) with hyperbaric solution of prilocaine 2% (mg = 4 x [0.3 × BW (kg) + 0.05 × SCL (cm)]) and morphine (0.03 mg/kg) and combined ultrasound (US) and electro stimulator-guided psoas compartment and ischiatic nerve block (PB) with ropivacaine 0.375% (0.45 mL/kg). Dogs undergoing tibial plateau levelling osteotomy (TPLO) were randomly assigned to receive either SA or PB. Procedural failure, perioperative rescue analgesia, motor block recovery and complications were recorded. RESULTS: Procedural failure rate (PFR) was 19% (7 out of 36) for SA and 9% (3 out of 32) for PB (p = 0.31). Intraoperative rescue analgesia was administered to 6/29 (21%) SA group dogs and in 15/29 (52%) PB group dogs, respectively (p = 0.03). At 3 h after RAT, percentage of dogs with complete block recovery was 25/29 (86%) and 25/29 (86%) in group SA and PB, respectively (p = 1). Two cases of pruritus and one case of urinary retention were recorded in the SA group. Residual ischiatic nerve block was noted at 12 h after RAT in 2/15 (13%) of dogs in group PB; it completely resolved 24 h after RAT. CONCLUSIONS: SA with prilocaine 2% and PB with ropivacaine 0.37% were found suitable for dogs undergoing same-day TPLO surgery. Pruritus and urinary retention in SA and residual block in both groups might occasionally delay the time of discharge. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-022-03277-6

    Heart Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression Associated With Male Sex and Salt-Sensitive Hypertension in the Dahl Rat

    Get PDF
    Angiotensin-converting enzyme 2 (ACE 2) in the heart including its sex dependency in the hypertensive heart, has not been much studied compared to ACE. In the present study, we used the Dahl salt-sensitive rat exposed to fructose and salt to model a hypertensive phenotype in males, females, and ovariectomized females. Blood pressure was measured by the tale-cuff technique in the conscious state. Expression of RAS-related genes ACE, ACE2, angiotensin II receptor type 1, Mas1, and CMA1 in the heart were quantified. The results revealed small but significant differences between male and female groups. The main results indicate the presence of a male preponderance for an increase in ACE and ACE2 gene expression. The results are in accordance with the role of androgens or male chromosomal complement in controlling the expression of the two ACE genes

    Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization

    Get PDF
    The ability to store effectively excess of electrical energy from peaks of production is key to the development of renewable energies. Power-To-Gas, and specifically Power-To-Methane represents one of the most promising option. This works presents an innovative process layout that integrates Chemical Looping Combustion of solid fuels and a Power-to-Methane system. The core of the proposed layout is a multiple interconnected fluidized bed system (MFB) equipped with a two-stage fuel reactor (t-FR). Performances of the system were evaluated by considering a coal as fuel and CuO supported on zirconia as oxygen carrier. A kinetic scheme comprising both heterogeneous and homogeneous reactions occurring in the MFB was considered. The methanation unit was modelled developing a thermodynamic calculation method based on minimization of the free Gibbs energy. The performance of the system was evaluated by considering that the CO/CO2 stream coming from the t-FR reacts over Ni supported on alumina catalyst with a pure H2 stream generated by an array of electrolysis cells. The number of cells to be stacked in the array was evaluated by considering that a constant H2 production able to convert the whole CO/CO2 stream produced by the CLC process should be attained. The environmental performance of the proposed process was quantified using the Life Cycle Assessment (LCA) methodology. The analysis shows i) that the majority originate from the production and disposal of the oxygen carrier used in the t-FR, and ii) that reusing part of the oxygen produced by the electrolysis cells improves significantly the environmental performance of the proposed process

    Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization

    Get PDF
    The ability to store effectively excess of electrical energy from peaks of production is key to the development of renewable energies. Power-To-Gas, and specifically Power-To-Methane represents one of the most promising option. This works presents an innovative process layout that integrates Chemical Looping Combustion of solid fuels and a Power-to-Methane system. The core of the proposed layout is a multiple interconnected fluidized bed system (MFB) equipped with a two-stage fuel reactor (t-FR). Performances of the system were evaluated by considering a coal as fuel and CuO supported on zirconia as oxygen carrier. A kinetic scheme comprising both heterogeneous and homogeneous reactions occurring in the MFB was considered. The methanation unit was modelled developing a thermodynamic calculation method based on minimization of the free Gibbs energy. The performance of the system was evaluated by considering that the CO/CO2 stream coming from the t-FR reacts over Ni supported on alumina catalyst with a pure H2 stream generated by an array of electrolysis cells. The number of cells to be stacked in the array was evaluated by considering that a constant H2 production able to convert the whole CO/CO2 stream produced by the CLC process should be attained. The environmental performance of the proposed process was quantified using the Life Cycle Assessment (LCA) methodology. The analysis shows i) that the majority originate from the production and disposal of the oxygen carrier used in the t-FR, and ii) that reusing part of the oxygen produced by the electrolysis cells improves significantly the environmental performance of the proposed process

    Introduction of robotic surgery for endometrial cancer into a Brazilian cancer service: a randomized trial evaluating perioperative clinical outcomes and costs

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate the clinical outcome and costs after the implementation of robotic surgery in the treatment of endometrial cancer, compared to the traditional laparoscopic approach. METHODS: In this prospective randomized study from 2015 to 2017, eighty-nine patients with endometrial carcinoma that was clinically restricted to the uterus were randomized in robotic surgery (44 cases) and traditional laparoscopic surgery (45 cases). We compared the number of retrieved lymph nodes, total time of surgery, time of each surgical step, blood loss, length of hospital stay, major and minor complications, conversion rates and costs. RESULTS: The ages of the patients ranged from 47 to 69 years. The median body mass index was 31.1 (21.4-54.2) in the robotic surgery arm and 31.6 (22.9-58.6) in the traditional laparoscopic arm. The median tumor sizes were 4.0 (1.5-10.0) cm and 4.0 (0.0-9.0) cm in the robotic and traditional laparoscopic surgery groups, respectively. The median total numbers of lymph nodes retrieved were 19 (3-61) and 20 (4-34) in the robotic and traditional laparoscopic surgery arms, respectively. The median total duration of the whole procedure was 319.5 (170-520) minutes in the robotic surgery arm and 248 (85-465) minutes in the traditional laparoscopic arm. Eight major complications were registered in each group. The total cost was 41% higher for robotic surgery than for traditional laparoscopic surgery. CONCLUSIONS: Robotic surgery for endometrial cancer presented equivalent perioperative morbidity to that of traditional laparoscopic surgery. The duration and total cost of robotic surgery were higher than those of traditional laparoscopic surgery

    Effects of Dipeptidyl Peptidase-4 Inhibitor Linagliptin on Left Ventricular Dysfunction in Patients with Type 2 Diabetes and Concentric Left Ventricular Geometry (the DYDA 2TM Trial). Rationale, Design, and Baseline Characteristics of the Study Population

    Get PDF
    Purpose: A multicentre, randomized, double-blind, placebo-controlled, parallel-group study aimed to define the potential positive effect of dipeptidyl peptidase-4 inhibition on left ventricular systolic function (LVSF) beyond glycemic control in type 2 diabetes mellitus (T2DM) (DYDA 2TM trial). Methods: Individuals with fairly controlled T2DM and asymptomatic impaired LVSF were randomized in a 1:1 ratio to receive for 48 weeks either linagliptin 5 mg daily or placebo, in addition to their stable diabetes therapy. Eligibility criteria were age ≥ 40 years, history of T2DM with a duration of at least 6 months, HbA1c ≤ 8.0% (≤ 64 mmol/mol), no history or clinical signs/symptoms of cardiac disease, evidence at baseline echocardiography of concentric LV geometry (relative wall thickness ≥ 0.42), and impaired LVSF defined as midwall fractional shortening (MFS) ≤ 15%. The primary end-point was the modification from baseline to 48 weeks of MFS. As an exploratory analysis, significant changes in LV global longitudinal strain and global circumferential strain, measured by speckle tracking echocardiography, were also considered. Secondary objectives were changes in diastolic and/or in systolic longitudinal function as measured by tissue Doppler. Results: A total of 188 patients were enrolled. They were predominantly males, mildly obese, with typical insulin-resistance co-morbidities such as hypertension and dyslipidemia. Mean relative wall thickness was 0.51 ± 0.09 and mean MFS 13.3% ± 2.5. Conclusions: DYDA 2 is the first randomized, double-blind, placebo-controlled trial to explore the effect of a dipeptidyl peptidase-4 inhibitor on LVSF in T2DM patients in primary prevention regardless of glycemic control. The main characteristics of the enrolled population are reported
    corecore