1,821 research outputs found

    Imaging studies of comets

    Get PDF
    Schmidt camera plates of comet Bradfield were secured on several nights in October 1987. The images of October 20 show the development of a huge bend in the plasma tail travelling several hundred kilometers per second down the tail; the likely solar-wind origin of this event is being explored. A charged coupled device (CCD) detector has been obtained. Calibration of the CCD is still underway, but high-quality, filtered cometary images shoud be possible in the near future

    Predation by Amphibians and Small Mammals on the Spruce Budworm (Lepidoptera: Tortricidae)

    Get PDF
    Stomach-content analyses of pitfall-trapped amphibians and small mammals showed that the eastern American toad, Bujo americanus americanus, and the wood frog, Rana sylvatica, preyed on late instars and moths of the spruce budworm, Choristoneura fumiferana. The spotted salamander, Ambystoma maculatum, and the masked shrew, Sorex cinereus, also preyed on late instars of the spruce budworm

    Large-scale interaction of the solar wind with comets Halley and Giacobini-Zinner

    Get PDF
    In-situ measurements of comets Halley and Giacobini-Zinner have confirmed the accepted basic physics of comet/solar wind interaction. The solar wind magnetic field is captured by the comet through the mechanism of field-line loading by cometary ions and the field lines drape around the cometary ionosphere. With this basic model in hand, the large-scale structure of the plasma tail as revealed by submissions to the Large Scale Phenomena Network of the International Halley Watch is reviewed. The turn-on and turn-off of plasma activity seem consistent with theory. Some 16 obvious disconnection events (DEs) have been recorded. Preliminary results showed agreement with the sector-boundary model; a detailed analysis of all DEs will be required in order to make a definitive statement. A study of plasma activity around the time of the VEGA encounters provides strong support for the sector-boundary model and illustrates once again the power of simultaneous remote and in-situ measurements

    Plasma-tail activity and the interplanetary medium at Halley's Comet during Armada Week: 6-14 March 1986

    Get PDF
    The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed

    Imaging studies of comets

    Get PDF
    The Joint Observatory for Cometary Research's (JOCR) historical mission has been to provide understanding of large-scale interactions between bright comets and solar wind using wide-angle (Schmidt) imagery and spacecraft data; in this pursuit the JOCR has excelled. The 16 inch Newtonian/Cassegrain telescope was upgraded to permit filtered, narrow-field charge coupled device (CCD) imaging of both bright and faint comets. Thus, the goal of obtaining narrow-band imagery of the near-nuclear region of bright comets was added to JOCR's original mission with emphasis on ionization processes and total gas production. A 300 mm lens/CCD system exists with 3 degree field of view (FOV) which uses comet filters; this system bridges the gap between the wide-field (8 x 10 deg) Schmidt plates and the several-arcmin. field of the 16 inch telescope. JOCR is located under dark skies on South Baldy Mountain (el. 10,600 ft.) near Socorro, NM, and is one of the last truly dark sites in the continental U.S

    Growing wheat to maturity in reduced gas pressures

    Get PDF
    The main objective of this project was to determine assimilation of CO2 and efficiency of water use in wheat grown to maturity in a low pressure total gas pressure environment. A functional test of the low pressure plant growth chamber system was accomplished in February and March of 1993 wherein this objective was partially achieved. Plants were grown to maturity in the chambers. Data were actively collected during the first 29 days. The plants were allowed to maintain themselves at the CO2 compensation point until day 45 of the study at which point active atmospheric regulation was resumed. This provided data at the vegetative and reproductive stages of the life cycle of the plants. However, this information may not be representative of the performance of the plants due to the loss of low pressure on a number of days during the study, which affected the plants by changing the pressure potential of the tissues. The performance of the system will be discussed on a component by component basis. The maintenance of the plants at the CO2 compensation point was driven by the failure of the computer program operating the system. The software problems that arose during the functional test have since been corrected. Results from the functional test also indicated that the plants were not receiving adequate light and nutrients. The growth chambers have been relocated and the growth room modified to compensate for these deficiencies

    Time-lapse CCD imagery of plasma-tail motions in Comet Austin

    Get PDF
    The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion

    Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    Get PDF
    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available fo

    Alteration of In Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives

    Get PDF
    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presence of CMC, which often induces synthesis of separate, intertwining bundles of microfibrils. Freeze- etch preparations of the bacterial outer membrane suggest that particles that are thought to be associated with cellulose synthesis or extrusion may be specifically organized to mediate synthesis of microfibril bundles. These data support the previous hypothesis that the cellulose ribbon of A. xylinum is formed by a hierarchical, cell- directed, self-assembly process. The relationship of these results to the regulation of cellulose microfibril size and wall extensibility in plant cell walls is discussed
    corecore