821 research outputs found

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation

    Full text link
    In the present work we show that planetary mean distances can be calculated with the help of a Schrodinger-type diffusion equation. The obtained results are shown to agree with the observed orbits of all the planets and of the asteroid belt in the solar system, with only three empty states. Furthermore, the equation solutions predict a fundamental orbit at 0.05 AU from solar-type stars, a result confirmed by recent discoveries. In contrast to other similar approaches previously presented in the literature, we take into account the flatness of the solar system, by considering the flat solutions of the Schrodinger-type equation. The model has just one input parameter, given by the mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons & Fractal

    Dynamical Casimir effect with cylindrical waveguides

    Full text link
    I consider the quantum electromagnetic field in a coaxial cylindrical waveguide, such that the outer cylindrical surface has a time-dependent radius. The field propagates parallel to the axis, inside the annular region between the two cylindrical surfaces. When the mechanical frequency and the thickness of the annular region are small enough, only Transverse Electromagnetic (TEM) photons may be generated by the dynamical Casimir effect. The photon emission rate is calculated in this regime, and compared with the case of parallel plates in the limit of very short distances between the two cylindrical surfaces. The proximity force approximation holds for the transition matrix elements in this limit, but the emission rate scales quadratically with the mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page

    Inertial forces in the Casimir effect with two moving plates

    Full text link
    We combine linear response theory and dimensional regularization in order to derive the dynamical Casimir force in the low frequency regime. We consider two parallel plates moving along the normal direction in DD-dimensional space. We assume the free-space values for the mass of each plate to be known, and obtain finite, separation-dependent mass corrections resulting from the combined effect of the two plates. The global mass correction is proportional to the static Casimir energy, in agreement with Einstein's law of equivalence between mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical Review

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Quantum radiation pressure on a moving mirror at finite temperature

    Get PDF
    We compute the radiation pressure force on a moving mirror, in the nonrelativistic approximation, assuming the field to be at temperature T.T. At high temperature, the force has a dissipative component proportional to the mirror velocity, which results from Doppler shift of the reflected thermal photons. In the case of a scalar field, the force has also a dispersive component associated to a mass correction. In the electromagnetic case, the separate contributions to the mass correction from the two polarizations cancel. We also derive explicit results in the low temperature regime, and present numerical results for the general case. As an application, we compute the dissipation and decoherence rates for a mirror in a harmonic potential well.Comment: Figure 3 replaced, changes mainly in Sections IV and V, new appendix introduced. To appear in Physical Review

    Theoretical Analysis of Cold-formed Steel Battened Double Angle Members under Compression

    Get PDF
    In Brazil, battened double angle system is one of the systems most used in light truss, however, there are not any specific studies on its behavior, resulting in the fact that the standard procedures do not provide subsidies for the design of this section. Moreover, cold-formed steel si mple angles under compression, mostly with slender legs, have an interesting structural behavior compared to other cold-formed steel shapes. Two critical modes are observed in the elastic stability analysis: (i) global flexural mode in the case of longer members and (ii) a coincident local-plate/global flexural-torsional mode, which is critical for shorter members. Studying the behavior of double angle members is interesting, because in this case, besides the critical modes of the single angle, they also show critical modes, due to the presence of the batten plates that sometimes interfere with the behavior of the syst em. In this work, a nonlinear numerical analysis on the behavior of double angle in battened system is presented. The number of batten plates was varied studying their effectiveness in the nominal axial strength. The sensitivity of the members to initial geometric imperfections was also analyzed. Except for the thin angle specimen (t = 1.5 mm) the results obtained from the nonlinear analysis sh owed that the presence of the batten plates significantly increased the nomin al axial strength of the members. However for an increased number of batten plates the nominal axial strength of the members remained almost constant. It was observed that the members were more sensitive to initial geometric imperfections increasing that to the number of batten plates

    Towards absolute calibration of optical tweezers

    Get PDF
    Aiming at absolute force calibration of optical tweezers, following a critical review of proposed theoretical models, we present and test the results of MDSA (Mie-Debye-Spherical Aberration) theory, an extension of a previous (MD) model, taking account of spherical aberration at the glass/water interface. This first-principles theory is formulated entirely in terms of experimentally accessible parameters (none adjustable). Careful experimental tests of the MDSA theory, undertaken at two laboratories, with very different setups, are described. A detailed description is given of the procedures employed to measure laser beam waist, local beam power at the transparent microspheres trapped by the tweezers, microsphere radius and the trap transverse stiffness, as a function of radius and height in the (inverted microscope) sample chamber. We find generally very good agreement with MDSA theory predictions, for a wide size range, from the Rayleigh domain to large radii, including the values most often employed in practice, and at different chamber heights, both with objective overfilling and underfilling. The results asymptotically approach geometrical optics in the mean over size intervals, as they should, and this already happens for size parameters not much larger than unity. MDSA predictions for the trapping threshold, position of stiffness peak, stiffness variation with height, multiple equilibrium points and `hopping' effects among them are verified. Remaining discrepancies are ascribed to focus degradation, possibly arising from objective aberrations in the infrared, not yet included in MDSA theory.Comment: 15 pages, 20 figure
    corecore