681 research outputs found

    Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Get PDF
    Abstract. Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.</jats:p

    Competing ultrafast photoinduced electron transfer and intersystem crossing of [Re(CO)(3)(Dmp)(His124)(Trp122)]+ in Pseudomonas aeruginosa azurin:a nonadiabatic dynamics study

    Get PDF
    We present a computational study of sub-picosecond nonadiabatic dynamics in a rhenium complex coupled electronically to a tryptophan (Trp) side chain of Pseudomonas aeruginosa azurin, a prototypical protein used in the study of electron transfer in proteins. To gain a comprehensive understanding of the photoinduced processes in this system, we have carried out vertical excitation calculations at the TDDFT level of theory as well as nonadiabatic dynamics simulations using the surface hopping including arbitrary couplings (SHARC) method coupled to potential energy surfaces represented with a linear vibronic coupling model. The results show that the initial photoexcitation populates both singlet metal-to-ligand charge transfer (MLCT) and singlet charge-separated (CS) states, where in the latter an electron was transferred from the Trp amino acid to the complex. Subsequently, a complex mechanism of simultaneous intersystem crossing and electron transfer leads to the sub-picosecond population of triplet MLCT and triplet CS states. These results confirm the assignment of the sub-ps time constants of previous experimental studies and constitute the first computational evidence for the ultrafast formation of the charge-separated states in Re-sensitized azurin

    Highly efficient surface hopping dynamics using a linear vibronic coupling model.

    Get PDF
    We report an implementation of the linear vibronic coupling (LVC) model within the surface hopping dynamics approach and present utilities for parameterizing this model in a blackbox fashion. This results in an extremely efficient method to obtain qualitative and even semi-quantitative information about the photodynamical behavior of a molecule, and provides a new route toward benchmarking the results of surface hopping computations. The merits and applicability of the method are demonstrated in a number of applications. First, the method is applied to the SO2 molecule showing that it is possible to compute its absorption spectrum beyond the Condon approximation, and that all the main features and timescales of previous on-the-fly dynamics simulations of intersystem crossing are reproduced while reducing the computational effort by three orders of magnitude. The dynamics results are benchmarked against exact wavepacket propagations on the same LVC potentials and against a variation of the electronic structure level. Four additional test cases are presented to exemplify the broader applicability of the model. The photodynamics of the isomeric adenine and 2-aminopurine molecules are studied and it is shown that the LVC model correctly predicts ultrafast decay in the former and an extended excited-state lifetime in the latter. Futhermore, the method correctly predicts ultrafast intersystem crossing in the modified nucleobase 2-thiocytosine and its absence in 5-azacytosine while it fails to describe the ultrafast internal conversion to the ground state in the latter

    Challenges in simulating light-induced processes in DNA

    Get PDF
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i) stationary quantum chemical computations; (ii) the explicit description of the initial excitation of DNA with light; (iii) modeling the nonadiabatic excited state dynamics; (iv) simulation of the detected experimental observable; and (v) the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments

    Excited-states of a rhenium carbonyl diimine complex: solvation models, spin-orbit coupling, and vibrational sampling effects

    Get PDF
    Presentamos una investigación química cuántica de los estados excitados del complejo [Re (CO) 3 (Im) (Phen)] + (Im = imidazol; Phen = 1,10-fenantrolina) en solución que incluye acoplamientos de giro-órbita y muestreo vibracional. Para este objetivo, implementamos la mecánica cuántica / mecánica molecular (QM / MM) de incrustación electrostática en el conjunto de programas funcionales de densidad de Ámsterdam, adecuados para cálculos funcionales de densidad dependientes del tiempo que incluyen acoplamientos de órbita de espín. La nueva implementación se emplea para simular el espectro de absorción del complejo, que se compara con los resultados de la solvatación continua implícita y la inclusión de densidad congelada. Se utilizan simulaciones de dinámica molecular para muestrear las conformaciones del estado fundamental en la solución. Los resultados demuestran que cualquier estudio de los estados excitados de [Re (CO) 3 (Im) (Phen)] + en solución y su dinámica debe incluir un muestreo extenso de movimiento vibracional y acoplamientos de giro-órbita.We present a quantum-chemical investigation of the excited states of the complex [Re(CO)3(Im)(Phen)]+ (Im = imidazole; Phen = 1,10-phenanthroline) in solution including spin–orbit couplings and vibrational sampling. To this aim, we implemented electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) in the Amsterdam Density Functional program suite, suitable for time-dependent density functional calculations including spin–orbit couplings. The new implementation is employed to simulate the absorption spectrum of the complex, which is compared to the results of implicit continuum solvation and frozen-density embedding. Molecular dynamics simulations are used to sample the ground state conformations in solution. The results demonstrate that any study of the excited states of [Re(CO)3(Im)(Phen)]+ in solution and their dynamics should include extensive sampling of vibrational motion and spin–orbit couplings.• Austrian Science Fund. Proyecto I2883, para Sebastian Mai, Aurora Muñoz-Losa, Letizia González Herrero • Agence Nationale de la Recherche (ANR). Proyecto ANR-15-CE29-0027, para Hugo Gattuso, Maria Fumanal, Antonio Monari, Chantal Daniel • Financial Reporting Council y Labex CSC. Proyecto ANR-10-LABX-0026_CSC, para Maria Fumanal, Chantal Daniel • Action CM1405 - COSTpeerReviewe

    Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method

    Get PDF
    © 2017 Author(s). We report an implementation for employing the algebraic diagrammatic construction to second order [ADC(2)] ab initio electronic structure level of theory in nonadiabatic dynamics simulations in the framework of the SHARC (surface hopping including arbitrary couplings) dynamics method. The implementation is intended to enable computationally efficient, reliable, and easy-to-use nonadiabatic dynamics simulations of intersystem crossing in organic molecules. The methodology is evaluated for the 2-thiouracil molecule. It is shown that ADC(2) yields reliable excited-state energies, wave functions, and spin-orbit coupling terms for this molecule. Dynamics simulations are compared to previously reported results using high-level multi-state complete active space perturbation theory, showing favorable agreement

    Charge photogeneration in few-layer MoS2

    Full text link
    The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration (CPG). Here we use continuous wave photomodulation spectroscopy to identify the optical signature of long-lived charge carriers and femtosecond pump-probe spectroscopy to follow the CPG dynamics. We find that intitial photoexcitation yields a branching between excitons and charge carriers, followed by excitation energy dependent hot exciton dissociation as an additional CPG mechanism. Based on these findings, we make simple suggestions for the design of more efficient MoS2 photovoltaic and photodetector devices
    corecore