10,715 research outputs found
Bulk and boundary factorized S-matrices
We investigate the -invariant bulk (1+1D, factorized) -matrix
constructed by Ogievetsky, using the bootstrap on the three-point coupling of
the vector multiplet to constrain its CDD ambiguity. We then construct the
corresponding boundary -matrix, demonstrating it to be consistent with
symmetry.Comment: 7 page
Flame sprayed dielectric coatings improve heat dissipation in electronic packaging
Heat sinks in electronic packaging can be flame sprayed with dielectric coatings of alumina or beryllia and finished off with an organic sealer to provide high heat and electrical resistivity
Towards gravitationally assisted negative refraction of light by vacuum
Propagation of electromagnetic plane waves in some directions in
gravitationally affected vacuum over limited ranges of spacetime can be such
that the phase velocity vector casts a negative projection on the time-averaged
Poynting vector. This conclusion suggests, inter alia, gravitationally assisted
negative refraction by vacuum.Comment: 6 page
Stationary and moving breathers in a simplified model of curved alpha--helix proteins
The existence, stability and movability of breathers in a model for
alpha-helix proteins is studied. This model basically consists a chain of
dipole moments parallel to it. The existence of localized linear modes brings
about that the system has a characteristic frequency, which depends on the
curvature of the chain. Hard breathers are stable, while soft ones experiment
subharmonic instabilities that preserve, however the localization. Moving
breathers can travel across the bending point for small curvature and are
reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure
Universal diffusion near the golden chaos border
We study local diffusion rate in Chirikov standard map near the critical
golden curve. Numerical simulations confirm the predicted exponent
for the power law decay of as approaching the golden curve via principal
resonances with period (). The universal
self-similar structure of diffusion between principal resonances is
demonstrated and it is shown that resonances of other type play also an
important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure
Asymptotic Statistics of Poincar\'e Recurrences in Hamiltonian Systems with Divided Phase Space
By different methods we show that for dynamical chaos in the standard map
with critical golden curve the Poincar\'e recurrences P(\tau) and correlations
C(\tau) asymptotically decay in time as P ~ C/\tau ~ 1/\tau^3. It is also
explained why this asymptotic behavior starts only at very large times. We
argue that the same exponent p=3 should be also valid for a general chaos
border.Comment: revtex, 4 pages, 3 ps-figure
On Cavity Approximations for Graphical Models
We reformulate the Cavity Approximation (CA), a class of algorithms recently
introduced for improving the Bethe approximation estimates of marginals in
graphical models. In our new formulation, which allows for the treatment of
multivalued variables, a further generalization to factor graphs with arbitrary
order of interaction factors is explicitly carried out, and a message passing
algorithm that implements the first order correction to the Bethe approximation
is described. Furthermore we investigate an implementation of the CA for
pairwise interactions. In all cases considered we could confirm that CA[k] with
increasing provides a sequence of approximations of markedly increasing
precision. Furthermore in some cases we could also confirm the general
expectation that the approximation of order , whose computational complexity
is has an error that scales as with the size of the
system. We discuss the relation between this approach and some recent
developments in the field.Comment: Extension to factor graphs and comments on related work adde
The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: I. Basic Results
The problem of finding the exact energies and configurations for the
Frenkel-Kontorova model consisting of particles in one dimension connected to
their nearest-neighbors by springs and placed in a periodic potential
consisting of segments from parabolas of identical (positive) curvature but
arbitrary height and spacing, is reduced to that of minimizing a certain convex
function defined on a finite simplex.Comment: 12 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 6
Postscript figures, accepted by Phys. Rev.
Community Detection as an Inference Problem
We express community detection as an inference problem of determining the
most likely arrangement of communities. We then apply belief propagation and
mean-field theory to this problem, and show that this leads to fast, accurate
algorithms for community detection.Comment: 4 pages, 2 figure
- …