2,262 research outputs found

    Galaxy clustering in the NEWFIRM Medium Band Survey: the relationship between stellar mass and dark matter halo mass at 1 < z < 2

    Get PDF
    We present an analysis of the clustering of galaxies as a function of their stellar mass at 1 < z < 2 using data from the NEWFIRM Medium Band Survey (NMBS). The precise photometric redshifts and stellar masses that the NMBS produces allows us to define a series of mass limited samples of galaxies more massive than 0.7, 1 and 3x10^10 Msun in redshift intervals centered on z = 1.1, 1.5 and 1.9 respectively. In each redshift interval we show that there exists a strong dependence of clustering strength on the stellar mass limit of the sample, with more massive galaxies showing a higher clustering amplitude on all scales. We further interpret our clustering measurements in the LCDM cosmological context using the halo model of galaxy clustering. We show that the typical halo mass of central and satellite galaxies increases with stellar mass, whereas the satellite fraction decreases with stellar mass, qualitatively the same as is seen at z < 1. We see little evidence of any redshift dependence in the stellar mass-to-halo mass relationship over our narrow redshift range. However, when we compare with similar measurements at z~0, we see clear evidence for a change in this relation. If we assume a universal baryon fraction, the ratio of stellar mass to halo mass reveals the fraction of baryons that have been converted to stars. We see that the peak in this star formation efficiency for central galaxies shifts to higher halo masses at higher redshift, moving from ~7x10^11 Msun at z~0 to ~3x10^12 Msun at z~1.5, revealing evidence of `halo downsizing'. Finally we show that for highly biased galaxy populations at z > 1 there may be a discrepancy between the measured space density and clustering and that predicted by the halo model. This could imply that there is a problem with one or more ingredients of the halo model at these redshifts, for instance the halo bias relation or the halo profile.Comment: Accepted for publication in ApJ. Correction made to typo in halo masses in conclusion

    Vibro-Injection Pile Installation in Sand: Part I—Interpretation as Multi-material Flow

    Get PDF
    The installation of vibro-injection piles into saturated sand has a significant impact on the surrounding soil and neighboring buildings. It is generally characterized by a multi-material flow with large material deformations, non-stationary and new material interfaces, and by the interaction of the grain skeleton and the pore water. Part 1 in this series of papers is concerned with the mathematical and physical modeling of the multi-material flow associated with vibro-injection pile installation. This model is the backbone of a new multi-material arbitrary Lagrangian-Eulerian (MMALE) numerical method presented in Part 2.DFG, 76838227, Numerische Modellierung der Herstellung von Rüttelinjektionspfähle

    Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering

    Full text link
    Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds. Significant efforts have been made to develop functional biodegradable scaffolds for tissue regeneration that can enhance cell function and guide new tissue formation. This paper discusses the recent advancements of functionalizing synthetic biodegradable polymer scaffolds, focusing on polymer synthesis, surface modification, and cellular response on these functionalized scaffolds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92034/1/911_ftp.pd

    X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors.

    Get PDF
    A three-dimensional (3D) irregular and unstructured pore network was built using local topological and geometrical properties of an isometric bead pack imaged by means of a high-resolution X-ray computed micro-tomography technique. A pore network model was developed to analyze the 3D laminar/inertial(non-Darcy) flows at the mesoscopic (pore level) and macroscopic (after ensemble-averaging) levels. The non-linear laminar flow signatures were captured at the mesoscale on the basis of analogies with contraction and expansion friction losses. The model provided remarkably good predictions of macroscopic frictional loss gradient in Darcy and non-Darcy regimes with clear-cut demarcation using channel-based Reynolds number statistics. It was also able to differentiate contributions due to pore and channel linear losses, and contraction/expansion quadratic losses. Macroscopic mechanical dispersion was analyzed in terms of retroflow channels, and transverse and longitudinal Péclet numbers. The model qualitatively retrieved the Péclet-Reynolds scaling law expected for heterogeneous networks with predominance of mechanical dispersion. Advocated in watermark is the potential of pore network modeling to build a posteriori constitutive relations for the closures of the more conventional macroscopic Euler approaches to capture more realistically single-phase flow phenomena in fixed-bed reactor applications in chemical engineering

    A3COSMOS: the dust attenuation of star-forming galaxies at z=2.5−4.0 from the COSMOS-ALMA archive

    Get PDF
    We present an analysis of the dust attenuation of star forming galaxies at z=2.5−4.0 through the relationship between the UV spectral slope ( β ), stellar mass ( M∗ ) and the infrared excess (IRX =LIR/LUV ) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A 3 COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z∼3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 μJy/beam (1 σ ). The detection rate is highly mass dependent, decreasing drastically below log(M∗/M⊙)=10.5 . The detected galaxies show that the IRX- β relationship of massive ( logM∗/M⊙>10 ) main sequence galaxies at z=2.5−4.0 is consistent with that of local galaxies, while starbursts are generally offset by ∼0.5dex to larger IRX values. At the low mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX- M∗ relation at log(M∗/M⊙)>9 exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at logM∗/M⊙<10 . However, our results are consistent with early measurements at z∼5.5 , indicating a potential redshift evolution between z∼2 and z∼6 . Deeper observations targeting low mass galaxies will be required to confirm this finding

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Which symptoms are linked to a delayed presentation among melanoma patients? A retrospective study

    Get PDF
    Background: The incidence of melanoma is rising. Early detection is associated with a more favourable outcome. The factors that influence the timing of a patient’s presentation for medical assessment are not fully understood. The aims of the study were to measure the nature and duration of melanoma symptoms in a group of patients diagnosed with melanoma within the preceding 18 months and to identify the symptoms and barriers associated with a delay in presentation. Methods: A questionnaire was distributed to a random sample of 200 of the 963 melanoma patients who had participated in the Cancer Patient Experience Survey 2010 and were known to be alive 1 year later. Data were collected on symptoms, duration of symptoms prior to presentation and the reasons for not attending a doctor sooner. Results: A total of 159 patients responded to the questionnaire; 74 (47%) were men; mean age was 62 (range 24–90) years. Of the 149 patients who reported a symptom, 40 (27%) had a delayed presentation (i.e. >3 months). A mole growing bigger was the most common symptom and reporting this symptom was significantly associated with a delayed presentation (odds ratio (OR) 2.04, 95% confidence interval (95% CI) 1.14–5.08). Patients aged ≥65 years were less likely to report a barrier to presentation and were less likely to delay than those under 40, although this was of borderline statistical significance (OR 0.28, 95% CI 0.08–1.00). Conclusions: This study highlights that an enlarging mole is a significant symptom influencing the timing of presentation. Increasing public awareness of the signs of melanoma and of the importance of early presentation is desirable. Health professionals should take advantage of the opportunity to educate patients on such symptoms and signs where feasible. Further exploration of the barriers to presentation in younger people should be considered

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    Metabolic flexibility as a major predictor of spatial distribution in microbial communities

    Get PDF
    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology
    corecore