5,135 research outputs found

    A combined "electrochemical-frustrated Lewis pair" approach to hydrogen activation: surface catalytic effects at platinum electrodes

    Get PDF
    Herein, we extend our “combined electrochemical–frustrated Lewis pair” approach to include Pt electrode surfaces for the first time. We found that the voltammetric response of an electrochemical–frustrated Lewis pair (FLP) system involving the B(C6F5)3/[HB(C6F5)3]− redox couple exhibits a strong surface electrocatalytic effect at Pt electrodes. Using a combination of kinetic competition studies in the presence of a H atom scavenger, 6-bromohexene, and by changing the steric bulk of the Lewis acid borane catalyst from B(C6F5)3 to B(C6Cl5)3, the mechanism of electrochemical–FLP reactions on Pt surfaces was shown to be dominated by hydrogen-atom transfer (HAT) between Pt, [Pt[BOND]H] adatoms and transient [HB(C6F5)3]⋅ electrooxidation intermediates. These findings provide further insight into this new area of combining electrochemical and FLP reactions, and proffers additional avenues for exploration beyond energy generation, such as in electrosynthesis

    A Robbins--Monro Sequence That Can Exploit Prior Information For Faster Convergence

    Full text link
    We propose a new method to improve the convergence speed of the Robbins-Monro algorithm by introducing prior information about the target point into the Robbins-Monro iteration. We achieve the incorporation of prior information without the need of a -- potentially wrong -- regression model, which would also entail additional constraints. We show that this prior-information Robbins-Monro sequence is convergent for a wide range of prior distributions, even wrong ones, such as Gaussian, weighted sum of Gaussians, e.g., in a kernel density estimate, as well as bounded arbitrary distribution functions greater than zero. We furthermore analyse the sequence numerically to understand its performance and the influence of parameters. The results demonstrate that the prior-information Robbins-Monro sequence converges faster than the standard one, especially during the first steps, which are particularly important for applications where the number of function measurements is limited, and when the noise of observing the underlying function is large. We finally propose a rule to select the parameters of the sequence.Comment: 26 pages, 5 figure

    Topological Protection of Coherence in Noisy Open Quantum Systems

    Full text link
    We consider topological protection mechanisms in dissipative quantum systems in the presence of quenched disorder, with the intent to prolong coherence times of qubits. The physical setting is a network of qubits and dissipative cavities whose coupling parameters are tunable, such that topological edge states can be stabilized. The evolution of a fiducial qubit is entirely determined by a non-Hermitian Hamiltonian which thus emerges from a bona-fide physical process. It is shown how even in the presence of disorder winding numbers can be defined and evaluated in real space, as long as certain symmetries are preserved. Hence we can construct the topological phase diagrams of noisy open quantum models, such as the non-Hermitian disordered Su-Schrieffer- Heeger dimer model and a trimer model that includes longer-range couplings. In the presence of competing disorder parameters, interesting re-entrance phenomena of topologically non-trivial sectors are observed. This means that in certain parameter regions, increasing disorder drastically increases the coherence time of the fiducial qubit

    Biochar Additions Alter the Abundance of P-Cycling-Related Bacteria in the Rhizosphere Soil of Portulaca oleracea L. under Salt Stress

    Get PDF
    Numerous reports confirm a positive impact of biochar amendments on soil enzyme activities, nutrient cycles, and, finally, plant growth and development. However, reports explaining the process behind such diverse observations are scarce. The aim of the present study was (1) to evaluate the effect of biochar on the growth of purslane (Portulaca oleracea L.) and nutrients; (2) to determine the response of rhizosphere enzyme activities linked to soil phosphorus cycling after bio-char amendment under non–saline and saline soil conditions. Furthermore, we investigate whether adding biochar to soil alters the abundance of P-cycling-related bacteria. Two rates of biochar (2% and 4%) were applied in pot experiments. Biochar addition of 2% significantly increased plant growth under non-saline and saline soil conditions by 21% and 40%, respectively. Moreover, applying biochar increased soil microbial activity as observed by fluorescein diacetate (FDA) hydrolase activity, as well as phosphomonoesterase activities, and the numbers of colony-forming units (CFU) of P-mobilizing bacteria. Soil amended with 2% biochar concentration increased total soil nitrogen (Nt), phosphorus (P), and total carbon (Ct) concentrations by 18%, 15%, and 90% under non-saline soil conditions and by 29%, 16%, and 90% in saline soil compared the control, respectively. The soil FDA hydrolytic activity and phosphatase strongly correlate with soil Ct, Nt, and P contents. The rhizosphere soil collected after biochar amendment showed a higher abundance of tricalcium phosphate-solubilizing bacteria than the control soil without biochar. Overall, this study demonstrated that 2% maize-derived biochar positively affects halophyte plant growth and thus could be considered for potential use in the reclamation of degraded saline soil.Georg Forster Research FellowshipAlexander von Humboldt Foundatio

    Interactive Effects of Biochar, Nitrogen, and Phosphorous on the Symbiotic Performance, Growth, and Nutrient Uptake of Soybean (Glycine max L.)

    Get PDF
    Numerous studies reported the positive effect of soil amendment with biochar on plant development. However, little is known about biochar and its interrelation with nitrogen (N) and phosphorous (P) additions and their impact on plant growth. We carried out greenhouse experiments to understand the interactive effects of nitrogen and phosphorus supply, as well as biochar amendment, on the symbiotic performance of soybean (Glycine max L.) with Bradyrhizobium japonicum, and plant growth and nutrient uptake. The biochar was produced from maize by heating at 600 °C for 30 min and used for pot experiments at an application rate of 2%. Plants were fertilized with two different concentrations of P (KH2PO4) and N (NH4NO3). Biochar application significantly increased the dry weight of soybean root and shoot biomass, by 34% and 42%, under low nitrogen and low phosphorus supply, respectively. Bradyrhizobium japonicum inoculation enhanced the dry weight of shoot biomass significantly, by 41% and 67%, in soil without biochar and with biochar addition, respectively. The nodule number was 19% higher in plants grown under low N combined with low or high P, than in high N combinations, while biochar application increased nodule number in roots. Moreover, biochar application increased N uptake of plants in all soil treatments with N or P supply, compared with B. japonicum-inoculated and uninoculated plants. A statistical difference in P uptake of plants between biochar and nutrient levels was observed with low N and high P supply in the soil. Our results show that the interactions between nitrogen, phosphorus, and biochar affect soybean growth by improving the symbiotic performance of B. japonicum and the growth and nutrition of soybean. We observed strong positive correlations between plant shoot biomass, root biomass, and N and P uptake. These data indicated that the combined use of biochar and low N, P application can be an effective approach in improving soybean growth with minimum nutrient input.Peer Reviewe
    • 

    corecore