424 research outputs found

    Spin-1 Antiferromagnetic Heisenberg Chains in an External Staggered Field

    Full text link
    We present in this paper a nonlinear sigma-model analysis of a spin-1 antiferromagnetic Heisenberg chain in an external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for the staggered magnetization curve, the core of the paper is a novel calculation, at the tree level, of the Green functions of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon continuum appears as well whose weight is a stedily increasing function of the applied field, while the weight of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is derived and discussed. A detailed comparison with the present experimental and numerical (DMRG) status of the art as well as with previous analytical approaches is also made.Comment: 23 pages, 3 figures, LaTe

    The Sunyaev-Zel'dovich effect in WMAP data

    Full text link
    Using WMAP 5 year data, we look for the average Sunyaev-Zel'dovich effect (SZE) signal from clusters of galaxies by stacking the regions around hundreds of known X-ray clusters. We detect the average SZE at a very high significance level. The average cluster signal is spatially resolved in the W band. This mean signal is compared with the expected signal from the same clusters calculated on the basis of archival ROSAT data. From the comparison we conclude that the observed SZE seems to be less than the expected signal derived from X-ray measurements when a standard beta-model is assumed for the gas distribution. This conclusion is model dependent. Our predictions depend mostly on the assumptions made about the core radius of clusters and the slope of the gas density profile. Models with steeper profiles are able to simultaneously fit both X-ray and WMAP data better than a beta-model. However, the agreement is not perfect and we find that it is still difficult to make the X-ray and SZE results agree. A model assuming point source contamination in SZE clusters renders a better fit to the one-dimensional SZE profiles thus suggesting that contamination from point sources could be contributing to a diminution of the SZE signal. Selecting a model that better fits both X-ray and WMAP data away from the very central region, we estimate the level of contamination and find that on average, the point source contamination is on the level of 16 mJy (at 41 GHz), 26 mJy (at 61 GHz) and 18 mJy (at 94 GHz). These estimated fluxes are marginally consistent with the estimated contamination derived from radio and infrared surveys thus suggesting that the combination of a steeper gas profile and the contribution from point sources allows us to consistently explain the X-ray emission and SZE in galaxy clusters as measured by ROSAT and WMAP.Comment: 17 pages and 17 figures. Submited to MNRA

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis

    Get PDF
    A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination

    The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions

    Get PDF
    In this comprehensive review, we report on the preparation of graft-copolymers of cellulose and cellulose derivatives using atom transfer radical polymerization (ATRP) under homogeneous conditions. The review is divided into four sections according to the cellulosic material that is graft-copolymerised; (i) cellulose, (ii) ethyl cellulose, (iii) hydroxypropyl cellulose and (iv) other cellulose derivatives. In each section, the grafted synthetic polymers are described as well as the methods used for ATRP macro-initiator formation and graft-copolymerisation. The physical properties of the graft-copolymers including their self-assembly in solution into nanostructures and their stimuli responsive behaviour are described. Potential applications of the self-assembled graft copolymers in areas such as nanocontainers for drug delivery are outline

    A Novel Mechanism of Soluble HLA-G Mediated Immune Modulation: Downregulation of T Cell Chemokine Receptor Expression and Impairment of Chemotaxis

    Get PDF
    BACKGROUND: In recent years, many immunoregulatory functions have been ascribed to soluble HLA-G (sHLA-G). Since chemotaxis is crucial for an efficient immune response, we have investigated for the first time the effects of sHLA-G on chemokine receptor expression and function in different human T cell populations. METHODOLOGY/PRINCIPAL FINDINGS: T cell populations isolated from peripheral blood were stimulated in the presence or absence of sHLA-G. Chemokine receptors expression was evaluated by flow cytometry. sHLA-G downregulated expression of i) CCR2, CXCR3 and CXCR5 in CD4(+) T cells, ii) CXCR3 in CD8(+) T cells, iii) CXCR3 in Th1 clones iv) CXCR3 in TCR Vdelta2gamma9 T cells, and upregulated CXCR4 expression in TCR Vdelta2gamma9 T cells. sHLA-G inhibited in vitro chemotaxis of i) CD4(+) T cells towards CCL2, CCL8, CXCL10 and CXCL11, ii) CD8(+) T cells towards CXCL10 and CXCL11, iii) Th1 clones towards CXCL10, and iv) TCR Vdelta2gamma9 T cells towards CXCL10 and CXCL11. Downregulation of CXCR3 expression on CD4+ T cells by sHLA-G was partially reverted by adding a blocking antibody against ILT2/CD85j, a receptor for sHLA-G, suggesting that sHLA-G downregulated chemokine receptor expression mainly through the interaction with ILT2/CD85j. Follicular helper T cells (T(FH)) were isolated from human tonsils and stimulated as described above. sHLA-G impaired CXCR5 expression in T(FH) and chemotaxis of the latter cells towards CXCL13. Moreover, sHLA-G expression was detected in tonsils by immunohistochemistry, suggesting a role of sHLA-G in local control of T(FH) cell chemotaxis. Intracellular pathways were investigated by Western Blot analysis on total extracts from CD4+ T cells. Phosphorylation of Stat5, p70 s6k, beta-arrestin and SHP2 was modulated by sHLA-G treatment. CONCLUSIONS/SIGNIFICANCE: Our data demonstrated that sHLA-G impairs expression and functionality of different chemokine receptors in T cells. These findings delineate a novel mechanism whereby sHLA-G modulates T cell recruitment in physiological and pathological conditions

    Association between Protective and Deleterious HLA Alleles with Multiple Sclerosis in Central East Sardinia

    Get PDF
    The human leukocyte antigen (HLA) complex on chromosome 6p21 has been unambiguously associated with multiple sclerosis (MS). The complex features of the HLA region, especially its high genic content, extreme polymorphism, and extensive linkage disequilibrium, has prevented to resolve the nature of HLA association in MS. We performed a family based association study on the isolated population of the Nuoro province (Sardinia) to clarify the role of HLA genes in MS. The main stage of our study involved an analysis of the ancestral haplotypes A2Cw7B58DR2DQ1 and A30Cw5B18DR3DQ2. On the basis of a multiplicative model, the effect of the first haplotype is protective with an odds ratio (OR) = 0.27 (95% confidence interval CI 0.13–0.57), while that of the second is deleterious, OR 1.78 (95% CI 1.26–2.50). We found both class I (A, Cw, B) and class II (DR, DQ) loci to have an effect on MS susceptibility, but we saw that they act independently from each other. We also performed an exploratory analysis on a set of 796 SNPs in the same HLA region. Our study supports the claim that Class I and Class II loci act independently on MS susceptibility and this has a biological explanation. Also, the analysis of SNPs suggests that there are other HLA genes involved in MS, but replication is needed. This opens up new perspective on the study of MS

    Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors.</p> <p>Methods</p> <p>Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion.</p> <p>Results</p> <p>Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells.</p> <p>Conclusion</p> <p>Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells.</p
    corecore