8 research outputs found
Fragile X syndrome: panoramic radiographic evaluation of dental anomalies, dental mineralization stage, and mandibular angle
ABSTRACT Fragile X syndrome (FXS) is a disorder linked to the chromosome X long arm (Xq27.3), which is identified by a constriction named fragile site. It determines various changes, such as behavioral or emotional problems, learning difficulties, and intellectual disabilities. Craniofacial abnormalities such as elongated and narrow face, prominent forehead, broad nose, large and prominent ear pavilions, strabismus, and myopia are frequent characteristics. Regarding the oral aspects, deep and high-arched palate, mandibular prognathism, and malocclusion are also observed. Objective: The purpose of this study was to evaluate the dental radiographic characteristics as described in 40 records of patients with panoramic radiography. Material and Methods: The patients were in the range of 6–17 years old, and were divided into two groups (20 subjects who were compatible with the normality standard and 20 individuals diagnosed with the FXS), which were matched for gender and age. Analysis of the panoramic radiographic examination involved the evaluation of dental mineralization stage, mandibular angle size, and presence of dental anomalies in both deciduous and permanent dentitions. Results: The results of radiographic evaluation demonstrated that the chronology of tooth eruption of all third and second lower molars is anticipated in individuals with FXS (p<0.05). In this group, supernumerary deciduous teeth (2.83%), giroversion of permanent teeth (2.31%), and partial anodontia (1.82%) were the most frequent dental anomalies. In addition, an increase was observed in the mandibular angle size in the FXS group (p<0.05). Conclusion: We conclude that knowledge of dental radiographic changes is of great importance for dental surgeons to plan the treatment of these individuals
Retention of progenitor cell phenotype in otospheres from guinea pig and mouse cochlea
Abstract\ud
\ud
Background\ud
Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.\ud
\ud
\ud
Methods\ud
Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFα). Immunofluorescence assays were conducted for phenotype characterization.\ud
\ud
\ud
Results\ud
The TGFα group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.\ud
\ud
\ud
Conclusions\ud
Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage
Educational Attainment Influences Levels of Homozygosity through Migration and Assortative Mating
Individuals with a higher education are more likely to migrate, increasing the chance of meeting a spouse with a different ancestral background. In this context, the presence of strong educational assortment can result in greater ancestry differences within more educated spouse pairs, while less educated individuals are more likely to mate with someone with whom they share more ancestry. We examined the association between educational attainment and F roh (= the proportion of the genome consisting of runs of homozygosity [ROHs]) in ~2,000 subjects of Dutch ancestry. The subjects' own educational attainment showed a nominally significant negative association with F roh (p = .045), while the contribution of parental education to offspring F roh was highly significant (father: p < 10(-5); mother: p = 9 Ă 10(-5)), with more educated parents having offspring with fewer ROHs. This association was significantly and fully mediated by the physical distance between parental birthplaces (paternal education: pmediation = 2.4 Ă 10(-4); maternal education: pmediation = 2.3 Ă 10(-4)), which itself was also significantly associated with F roh (p = 9 Ă 10(-5)). Ancestry-informative principal components from the offspring showed a significantly decreasing association with geography as parental education increased, consistent with the significantly higher migration rates among more educated parents. Parental education also showed a high spouse correlation (Spearman's Ï = .66, p = 3 Ă 10(-262)). We show that less educated parents are less likely to mate with the more mobile parents with a higher education, creating systematic differences in homozygosity due to ancestry differences not directly captured by ancestry-informative principal components (PCs). Understanding how behaviors influence the genomic structure of a population is highly valuable for studies on the genetic etiology of behavioral, cognitive, and social traits