247 research outputs found

    A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods.

    Get PDF
    Background3' RNA sequencing provides an alternative to whole transcript analysis. However, we do not know a priori the relative advantage of each method. Thus, a comprehensive comparison between the whole transcript and the 3' method is needed to determine their relative merits. To this end, we used two commercially available library preparation kits, the KAPA Stranded mRNA-Seq kit (traditional method) and the Lexogen QuantSeq 3' mRNA-Seq kit (3' method), to prepare libraries from mouse liver RNA. We then sequenced and analyzed the libraries to determine the advantages and disadvantages of these two approaches.ResultsWe found that the traditional whole transcript method and the 3' RNA-Seq method had similar levels of reproducibility. As expected, the whole transcript method assigned more reads to longer transcripts, while the 3' method assigned roughly equal numbers of reads to transcripts regardless of their lengths. We found that the 3' RNA-Seq method detected more short transcripts than the whole transcript method. With regard to differential expression analysis, we found that the whole transcript method detected more differentially expressed genes, regardless of the level of sequencing depth.ConclusionsThe 3' RNA-Seq method was better able to detect short transcripts, while the whole transcript RNA-Seq was able to detect more differentially expressed genes. Thus, both approaches have relative advantages and should be selected based on the goals of the experiment

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure

    E-selectin S128R polymorphism and severe coronary artery disease in Arabs

    Get PDF
    BACKGROUND: The E-selectin p. S128R (g. A561C) polymorphism has been associated with the presence of angiographic coronary artery disease (CAD) in some populations, but no data is currently available on its association with CAD in Arabs. METHODS: In the present study, we determined the potential relevance of the E-selectin S128R polymorphism for severe CAD and its associated risk factors among Arabs. We genotyped Saudi Arabs for this polymorphism by PCR, followed by restriction enzyme digestion. RESULTS: The polymorphism was determined in 556 angiographically confirmed severe CAD patients and 237 control subjects with no CAD as established angiographically (CON). Frequencies of the S/S, S/R and R/R genotypes were found as 81.1%, 16.6% and 2.3% in CAD patients and 87.8%, 11.8%, and 0.4% in CON subjects, respectively. The frequency of the mutant 128R allele was higher among CAD patients compared to CON group (11% vs. 6%; odds ratio = 1.76; 95% CI 1.14 – 2.72; p = .007), thus indicating a significant association of the 128R allele with CAD among our population. However, the stepwise logistic regression for the 128R allele and different CAD risk factors showed no significant association. CONCLUSION: Among the Saudi population, The E-selectin p. S128R (g. A561C) polymorphism was associated with angiographic CAD in Univariate analysis, but lost its association in multivariate analysis

    Quantitative 3-Dimensional Imaging of Murine Neointimal and Atherosclerotic Lesions by Optical Projection Tomography

    Get PDF
    Traditional methods for the analysis of vascular lesion formation are labour intensive to perform - restricting study to ‘snapshots’ within each vessel. This study was undertaken to determine the suitability of optical projection tomographic (OPT) imaging for the 3-dimensional representation and quantification of intimal lesions in mouse arteries. = 0.85), confirming both the accuracy of this methodology and its non-destructive nature. It was also possible to record volumetric measurements of lesion and lumen and these were highly reproducible between scans (coefficient of variation = 5.36%, 11.39% and 4.79% for wire- and ligation-injury and atherosclerosis, respectively).These data demonstrate the eminent suitability of OPT for imaging of atherosclerotic and neointimal lesion formation, providing a much needed means for the routine 3-dimensional analysis of vascular morphology in studies of this type

    The importance of plasma apolipoprotein E concentration in addition to its common polymorphism on inter-individual variation in lipid levels: results from Apo Europe

    Get PDF
    The ApoEurope group, collaborating centres, and their associated investigators: Portugal: Unidade de Química Clínica, Instituto Nacional de Saúde, Lisboa: Maria do Carmo Martins, Maria Odete Rodrigues, Maria Isabel Albergaria, Maria Liseta AlpendreInterindividual variation in the concentration of plasma lipids which are associated with coronary artery disease (CAD) risk is determined by a combination of genetic and environmental factors. This study investigates the effects of apoE genotype and plasma concentration on cholesterol and triglycerides (TG) levels in subjects from five countries: Finland, France, Northern Ireland, Portugal, and Spain. Age and sex significantly influenced serum cholesterol, TG and apoE concentrations. The age effect differs in males and females. The allele frequencies of the apoE gene, one of the most widely studied CAD susceptibility genes, were determined: the epsilon2 allele frequency and the apoE concentration showed a north-south increasing gradient while the epsilon4 allele frequency showed the reverse. ApoE plays an important role in lipid metabolism. Total cholesterol and TG concentrations were significantly dependent on apoE genotype in both sexes. These differences in lipids between genotypes were more pronounced when plasma apoE concentrations were taken into account

    Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>NDRG</it>2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that <it>NDRG</it>2 expressed differentially in normal and cancer tissues. Specifically, <it>NDRG</it>2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of <it>NDRG</it>2 inhibited the proliferation of cancer cells. <it>NDRG</it>2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether <it>NDRG</it>2 participates in carcinogenesis of the thyroid.</p> <p>Methods</p> <p>In this study, we investigated the expression profile of human <it>NDRG</it>2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc.</p> <p>Results</p> <p>The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of <it>NDRG</it>2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of <it>NDRG</it>2 expression with gender, age, different histotypes of thyroid cancers or distant metastases.</p> <p>Conclusion</p> <p>Our data indicates that <it>NDRG</it>2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of <it>NDRG2 </it>in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of <it>NDRG</it>2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.</p

    Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies

    Get PDF
    Purpose This article provides a review of the transcriptomic expression profiling studies that have been performed on meningiomas so far. We discuss some future prospects and challenges ahead in the field of gene expression profiling. Methods We performed a systematic search in the PubMed and EMBASE databases in May 2010 using the following search terms alone or in combination: “meningioma”, “microarray analysis”, “oligonucleotide array sequence analysis”, or “gene expression profiling”. Only original research articles in English that had used RNA hybridized to high-resolution microarray chips to generate gene expression profiles were included. Results We identified 13 articles matching the inclusion criteria. All studies had been performed during the last decade. Conclusions The main results of the studies can be grouped in three categories: (1) several groups have identified meningioma-specific genes and genes associated with the three WHO grades, and the main histological subtypes of grade I meningiomas; (2) one publication has shown that the general transcription profile of samples of all WHO grades differs in vivo and in vitro; (3) one report provides evidence that microarray technology can be used in an automated fashion to classify tumors. Due to lack of consensus on how microarray data are presented, possible general trends found across the studies are difficult to extract. This could obstruct the discovery of important genes and pathways universally involved in meningioma biology

    The cardiomyocyte disrupts pyrimidine biosynthesis in non-myocytes to regulate heart repair

    Get PDF
    Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair

    Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation

    Get PDF
    Non thermal Irreversible electroporation (NTIRE) is a new tissue ablation method that induces selective damage only to the cell membrane while sparing all other tissue components. Our group has recently showed that NTIRE attenuated neointimal formation in rodent model. The goal of this study was to determine optimal values of NTIRE for vascular smooth muscle cell (VSMC) ablation.33 Sprague-Dawley rats were used to compare NTIRE protocols. Each animal had NTIRE applied to its left common carotid artery using a custom-made electrodes. The right carotid artery was used as control. Electric pulses of 100 microseconds were used. Eight IRE protocols were compared: 1-4) 10 pulses at a frequency of 10 Hz with electric fields of 3500, 1750, 875 and 437.5 V/cm and 5-8) 45 and 90 pulses at a frequency of 1 Hz with electric fields of 1750 and 875 V/cm. Animals were euthanized after one week. Histological analysis included VSMC counting and morphometry of 152 sections. Selective slides were stained with elastic Van Gieson and Masson trichrome to evaluate extra-cellular structures. The most efficient protocols were 10 pulses of 3500 V/cm at a frequency of 10 Hz and 90 pulses of 1750 V/cm at a frequency of 1 Hz, with ablation efficiency of 89+/-16% and 94+/-9% respectively. Extra-cellular structures were not damaged and the endothelial layer recovered completely.NTIRE is a promising, efficient and simple novel technology for VMSC ablation. It enables ablation within seconds without causing damage to extra-cellular structures, thus preserving the arterial scaffold and enabling endothelial regeneration. This study provides scientific information for future anti-restenosis experiments utilizing NTIRE

    Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models

    Full text link
    Mineralized collagen fibrils have been usually analyzed like a two phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that, when Halpin-Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations and a new finite lement model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement.The authors acknowledge the Ministerio de Economia y Competitividad the financial support given through the project DPI2010-20990 and the Generalitat Valenciana through the Programme Prometeo 2012/023. The authors thank Ms. Carla Gonzalez Carrillo by her help in the development of some of the numerical models.Vercher Martínez, A.; Giner Maravilla, E.; Arango Villegas, C.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2014). Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomechanics and Modeling in Mechanobiology. 13(2):1-21. https://doi.org/10.1007/s10237-013-0507-yS121132Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–392Ashman RB, Cowin SC, van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–361Bar-On B, Wagner HD (2012) Elastic modulus of hard tissues. J Biomech 45:672–678Bondfield W, Li CH (1967) Anisotropy of nonelastic flow in bone. J Appl Phys 38:2450–2455Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press Boca Raton, FloridaCowin SC, van Buskirk WC (1986) Thermodynamic restrictions on the elastic constant of bone. J Biomech 19:85–86Currey JD (1962) Strength of bone. Nature 195:513Cusack S, Miller A (1979) Determination of the elastic constants of collagen by brillouin light scattering. J Mol Biol 135:39–51Doty S, Robinson RA, Schofield B (1976) Morphology of bone and histochemical staining characteristics of bone cells. In: Aurbach GD (ed) Handbook of physiology. American Physiology Soc, Washington, pp 3–23Erts D, Gathercole LJ, Atkins EDT (1994) Scanning probe microscopy of crystallites in calcified collagen. J Mater Sci Mater Med 5:200–206Faingold A, Sidney RC, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Biomech Materials 9:198–206Franzoso G, Zysset PK (2009) Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomech Eng 131:021001Gebhardt W (1906) Über funktionell wichtige Anordnungsweisen der eineren und grösseren Bauelemente des Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entwickl Mech Org 20:187–322Gibson RF (1994) Principles of composite material mechanics. McGraw-Hill, New YorkGiraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180Gurtin ME (1972) The linear theory of elasticity. Handbuch der Physik VIa/ 2:1–296Halpin JC (1992) Primer on composite materials: analysis, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, FloridaHassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hanma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10Hohe J (2003) A direct homogenization approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels. Composites Part B 34:615–626Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order, and disorder in collagen fibrils. Biophys J 68:1661–1670Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phy Sol 52:1963–1990Landis WJ, Hodgens KJ, Aerna J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day, San FranciscoLempriere BM (1968) Poisson’s ratio in orthotropic materials. Am Inst Aeronaut Astronaut J J6:2226–2227Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University, New YorkLusis J, Woodhams RT, Xhantos M (1973) The effect of flake aspect ratio on flexural properties of mica reinforced plastics. Polym Eng Sci 13:139–145Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10:309–322Orgel JPRO, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ (2001) The in situ supermolecular structure of type I collagen. Structure 9:1061–1069Padawer GE, Beecher N (1970) On the strength and stiffness of planar reinforced plastic resins. Polym Eng Sci 10:185–192Pahr DH, Rammerstofer FG (2006) Buckling of honeycomb sandwiches: periodic finite element considerations. Comput Model Eng Sci 12:229–242Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9:499–510Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10:67–77Rezkinov N, Almany-Magal R, Shahar R, Weiner S (2013) Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 52(2):676–683Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282Suquet P (1987) Lecture notes in physics-homogenization techniques for composite media. Chapter IV. Springer, BerlinWagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25:1311–1320Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298Weiner S, Traub W, Wagner H (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255Yao H, Ouyang L, Ching W (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram 90:3194–3204Yoon YJ, Cowin SC (2008b) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7:1–11Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160Zhang Z, Zhang YWF, Gao H (2010) On optimal hierarchy of load-bearing biological materials. Proc R Soc B 278:519–525Zuo S, Wei Y (2007) Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica 20:198–20
    corecore