12 research outputs found
Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy
Background: After stroke, patients who suffer from hemiparesis tend to suppress the use of the affected extremity, a condition called learned non-use. Consequently, the lack of training may lead to the progressive deterioration of motor function. Although Constraint-Induced Movement Therapies (CIMT) have shown to be effective in treating this condition, the method presents several limitations, and the high intensity of its protocols severely compromises its adherence. We propose a novel rehabilitation approach called Reinforcement-Induced Movement Therapy (RIMT), which proposes to restore motor function through maximizing arm use. This is achieved by exposing the patient to amplified goal-oriented movements in VR that match the intended actions of the patient. We hypothesize that through this method we can increase the patients self-efficacy, reverse learned non-use, and induce long-term motor improvements. Methods: We conducted a randomized, double-blind, longitudinal clinical study with 18 chronic stroke patients. Patients performed 30 minutes of daily VR-based training during six weeks. During training, the experimental group experienced goal-oriented movement amplification in VR. The control group followed the same training protocol but without movement amplification. Evaluators blinded to group designation performed clinical measurements at the beginning, at the end of the training and at 12-weeks follow-up. We used the Fugl-Meyer Assessment for the upper extremities (UE-FM) (Sanford et al., Phys Ther 73:447–454, 1993) as a primary outcome measurement of motor recovery. Secondary outcome measurements included the Chedoke Arm and Hand Activity Inventory (CAHAI-7) (Barreca et al., Arch Phys Med Rehabil 6:1616–1622, 2005) for measuring functional motor gains in the performance of Activities of Daily Living (ADLs), the Barthel Index (BI) for the evaluation of the patient’s perceived independence (Collin et al., Int Disabil Stud 10:61–63, 1988), and the Hamilton scale (Knesevich et al., Br J Psychiatr J Mental Sci 131:49–52, 1977) for the identification of improvements in mood disorders that could be induced by the reinforcement-based intervention. In order to study and predict the effects of this intervention we implemented a computational model of recovery after stroke. Results: While both groups showed significant motor gains at 6-weeks post-treatment, only the experimental group continued to exhibit further gains in UE-FM at 12-weeks follow-up (p<.05). This improvement was accompanied by a significant increase in arm-use during training in the experimental group. Conclusions: Implicitly reinforcing arm-use by augmenting visuomotor feedback as proposed by RIMT seems beneficial for inducing significant improvement in chronic stroke patients. By challenging the patients’ self-limiting believe system and perceived low self-efficacy this approach might counteract learned non-use.This project was supported through ERC project cDAC (FP7-IDEAS-ERC 341196), EC H2020 project socSMCs (H2020-EU.1.2.2. 641321) and MINECO project SANAR (Gobierno de España)
Efficacy of Antimanic Treatments: Meta-analysis of Randomized, Controlled Trials
We conducted meta-analyses of findings from randomized, placebo-controlled, short-term trials for acute mania in manic or mixed states of DSM (III–IV) bipolar I disorder in 56 drug–placebo comparisons of 17 agents from 38 studies involving 10 800 patients. Of drugs tested, 13 (76%) were more effective than placebo: aripiprazole, asenapine, carbamazepine, cariprazine, haloperidol, lithium, olanzapine, paliperdone, quetiapine, risperidone, tamoxifen, valproate, and ziprasidone. Their pooled effect size for mania improvement (Hedges' g in 48 trials) was 0.42 (confidence interval (CI): 0.36–0.48); pooled responder risk ratio (46 trials) was 1.52 (CI: 1.42–1.62); responder rate difference (RD) was 17% (drug: 48%, placebo: 31%), yielding an estimated number-needed-to-treat of 6 (all p<0.0001). In several direct comparisons, responses to various antipsychotics were somewhat greater or more rapid than lithium, valproate, or carbamazepine; lithium did not differ from valproate, nor did second generation antipsychotics differ from haloperidol. Meta-regression associated higher study site counts, as well as subject number with greater placebo (not drug) response; and higher baseline mania score with greater drug (not placebo) response. Most effective agents had moderate effect-sizes (Hedges' g=0.26–0.46); limited data indicated large effect sizes (Hedges' g=0.51–2.32) for: carbamazepine, cariprazine, haloperidol, risperidone, and tamoxifen. The findings support the efficacy of most clinically used antimanic treatments, but encourage more head-to-head studies and development of agents with even greater efficacy