30 research outputs found

    Anomalous Action in Gauge Invariant, Nonlocal, Dynamical Quark Model

    Get PDF
    Anomalous sector of chiral Lagrangian is calculated in a gauge invariant, nonlocal, dynamical quark model. The Wess-Zumino term is proved coming from two kinds of sources, one is independent on and another dependent on dynamical quark self energy ÎŁ(k2)\Sigma(k^2). p6p^6 and more higher order anomalous sectors come only from ÎŁ(k2)\Sigma(k^2) dependent source. After some cancellation, standard Wess-Zumino action is obtained.Comment: 10 page

    Isospin violation and the proton's neutral weak magnetic form factor

    Get PDF
    The effects of isospin violation on the neutral weak magnetic form factor of the proton are studied using two-flavour chiral perturbation theory. The first nonzero contributions appear at O(p^4) in the small-momentum expansion, and the O(p^5) corrections are also calculated. The leading contributions from an explicit Delta(1232) isomultiplet are included as well. At such a high order in the chiral expansion, one might have expected a large number of unknown parameters to contribute. However, it is found that no unknown parameters can appear within loop diagrams, and a single tree-level counterterm at O(p^4) is sufficient to absorb all divergences. The momentum dependence of the neutral weak magnetic form factor is not affected by this counterterm.Comment: 26 pages including 9 figure

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,e′pe,e'p) data. We find that the relativistic calculations produce smaller (e,e′pe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Haptic Edge Detection Through Shear

    Get PDF
    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals

    Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition

    Full text link
    Objective: To study the relationship between thalamic glucose metabolism and neurological outcome after severe traumatic brain injury (TBI). Methods: Forty-nine patients with severe and closed TBI and 10 healthy control subjects with 18F-FDG PET were studied. Patients were divided into three groups: MCS&VS group (n ¼ 17), patients in a vegetative or a minimally conscious state; In-PTA group (n ¼ 12), patients in a state of post-traumatic amnesia (PTA); and Out-PTA group (n ¼ 20), patients who had emerged from PTA. SPM5 software implemented in MATLAB 7 was used to determine the quantitative differences between patients and controls. FDG-PET images were spatially normalized and an automated thalamic ROI mask was generated. Group differences were analysed with two sample voxel-wise t-tests. Results: Thalamic hypometabolism was the most prominent in patients with low consciousness (MCS&VS group) and the thalamic hypometabolism in the In-PTA group was more prominent than that in the Out-PTA group. Healthy control subjects showed the greatest thalamic metabolism. These differences in metabolism were more pronounced in the internal regions of the thalamus. Conclusions: The results confirm the vulnerability of the thalamus to suffer the effect of the dynamic forces generated during a TBI. Patients with thalamic hypometabolism could represent a sub-set of subjects that are highly vulnerable to neurological disability after TBI.Lull Noguera, N.; Noé, E.; Lull Noguera, JJ.; Garcia Panach, J.; Chirivella, J.; Ferri, J.; López-Aznar, D.... (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Injury. 24(9):1098-1107. doi:10.3109/02699052.2010.494592S10981107249Gallagher, C. N., Hutchinson, P. J., & Pickard, J. D. (2007). Neuroimaging in trauma. Current Opinion in Neurology, 20(4), 403-409. doi:10.1097/wco.0b013e32821b987bWoischneck, D., Klein, S., Rei�berg, S., D�hring, W., Peters, B., & Firsching, R. (2001). Classification of Severe Head Injury Based on Magnetic Resonance Imaging. Acta Neurochirurgica, 143(3), 263-271. doi:10.1007/s007010170106Grados, M. A. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. Journal of Neurology, Neurosurgery & Psychiatry, 70(3), 350-358. doi:10.1136/jnnp.70.3.350Meythaler, J. M., Peduzzi, J. D., Eleftheriou, E., & Novack, T. A. (2001). Current concepts: Diffuse axonal injury–associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1461-1471. doi:10.1053/apmr.2001.25137Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive Sequelae of Diffuse Axonal Injury. Archives of Neurology, 63(3), 418. doi:10.1001/archneur.63.3.418Brandstack, N., Kurki, T., Tenovuo, O., & Isoniemi, H. (2006). MR imaging of head trauma: Visibility of contusions and other intraparenchymal injuries in early and late stage. Brain Injury, 20(4), 409-416. doi:10.1080/02699050500487951Xu, J., Rasmussen, I.-A., Lagopoulos, J., & Håberg, A. (2007). Diffuse Axonal Injury in Severe Traumatic Brain Injury Visualized Using High-Resolution Diffusion Tensor Imaging. Journal of Neurotrauma, 24(5), 753-765. doi:10.1089/neu.2006.0208Levine, B., Fujiwara, E., O’connor, C., Richard, N., Kovacevic, N., Mandic, M., … Black, S. E. (2006). In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging. Journal of Neurotrauma, 23(10), 1396-1411. doi:10.1089/neu.2006.23.1396Metting, Z., Rödiger, L. A., De Keyser, J., & van der Naalt, J. (2007). Structural and functional neuroimaging in mild-to-moderate head injury. The Lancet Neurology, 6(8), 699-710. doi:10.1016/s1474-4422(07)70191-6Nakayama, N. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 856-862. doi:10.1136/jnnp.2005.080523Nakayama, N. (2006). Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 850-855. doi:10.1136/jnnp.2005.077875O’Leary, D. D. M., Schlaggar, B. L., & Tuttle, R. (1994). Specification of Neocortical Areas and Thalamocortical Connections. Annual Review of Neuroscience, 17(1), 419-439. doi:10.1146/annurev.ne.17.030194.002223Mitelman, S. A., Byne, W., Kemether, E. M., Newmark, R. E., Hazlett, E. A., Haznedar, M. M., & Buchsbaum, M. S. (2006). Metabolic thalamocortical correlations during a verbal learning task and their comparison with correlations among regional volumes. Brain Research, 1114(1), 125-137. doi:10.1016/j.brainres.2006.07.043Laureys, S., Faymonville, M., Luxen, A., Lamy, M., Franck, G., & Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. The Lancet, 355(9217), 1790-1791. doi:10.1016/s0140-6736(00)02271-6Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., … Maquet, P. (1999). Impaired Effective Cortical Connectivity in Vegetative State: Preliminary Investigation Using PET. NeuroImage, 9(4), 377-382. doi:10.1006/nimg.1998.0414Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. The Lancet Neurology, 3(9), 537-546. doi:10.1016/s1474-4422(04)00852-xGuye, M., Bartolomei, F., & Ranjeva, J.-P. (2008). Imaging structural and functional connectivity: towards a unified definition of human brain organization? Current Opinion in Neurology, 24(4), 393-403. doi:10.1097/wco.0b013e3283065cfbPrice, C. J., & Friston, K. J. (2002). Functional Imaging Studies of Neuropsychological Patients: Applications and Limitations. Neurocase, 8(5), 345-354. doi:10.1076/neur.8.4.345.16186Kim, J., Avants, B., Patel, S., Whyte, J., Coslett, B. H., Pluta, J., … Gee, J. C. (2008). Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study. NeuroImage, 39(3), 1014-1026. doi:10.1016/j.neuroimage.2007.10.005Maxwell, W. L., MacKinnon, M. A., Smith, D. H., McIntosh, T. K., & Graham, D. I. (2006). Thalamic Nuclei After Human Blunt Head Injury. Journal of Neuropathology & Experimental Neurology, 65(5), 478-488. doi:10.1097/01.jnen.0000229241.28619.75SIDAROS, A., SKIMMINGE, A., LIPTROT, M., SIDAROS, K., ENGBERG, A., HERNING, M., … ROSTRUP, E. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. NeuroImage, 44(1), 1-8. doi:10.1016/j.neuroimage.2008.08.030Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry—The Methods. NeuroImage, 11(6), 805-821. doi:10.1006/nimg.2000.0582Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 14(1), 21-36. doi:10.1006/nimg.2001.0786Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., … Zasler, N. D. (2002). The minimally conscious state: Definition and diagnostic criteria. Neurology, 58(3), 349-353. doi:10.1212/wnl.58.3.349Gispert, J. ., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., & Desco, M. (2003). Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. NeuroImage, 19(3), 601-612. doi:10.1016/s1053-8119(03)00072-7Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4), 254-266. doi:10.1002/(sici)1097-0193(1999)7:43.0.co;2-gTzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. doi:10.1006/nimg.2001.0978Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15(4), 870-878. doi:10.1006/nimg.2001.1037LAUREYS, S., LEMAIRE, C., MAQUET, P., PHILLIPS, C., & FRANCK, G. (1999). Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 121-122. doi:10.1136/jnnp.67.1.121Tommasino, C., Grana, C., Lucignani, G., Torri, G., & Fazio, F. (1995). Regional Cerebral Metabolism of Glucose in Comatose and Vegetative State Patients. Journal of Neurosurgical Anesthesiology, 7(2), 109-116. doi:10.1097/00008506-199504000-00006ANDERSON, C. V., WOOD, D.-M. G., BIGLER, E. D., & BLATTER, D. D. (1996). Lesion Volume, Injury Severity, and Thalamic Integrity following Head Injury. Journal of Neurotrauma, 13(2), 59-65. doi:10.1089/neu.1996.13.59Ge, Y., Patel, M. B., Chen, Q., Grossman, E. J., Zhang, K., Miles, L., … Grossman, R. I. (2009). Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 23(7-8), 666-674. doi:10.1080/02699050903014899Uzan, M. (2003). Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 33-38. doi:10.1136/jnnp.74.1.33OMMAYA, A. K., & GENNARELLI, T. A. (1974). CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESS. Brain, 97(1), 633-654. doi:10.1093/brain/97.1.633Giacino, J., & Whyte, J. (2005). The Vegetative and Minimally Conscious States. Journal of Head Trauma Rehabilitation, 20(1), 30-50. doi:10.1097/00001199-200501000-00005Zeman, A. (2001). Consciousness. Brain, 124(7), 1263-1289. doi:10.1093/brain/124.7.1263Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological Findings in the Brain of Karen Ann Quinlan -- The Role of the Thalamus in the Persistent Vegetative State. New England Journal of Medicine, 330(21), 1469-1475. doi:10.1056/nejm199405263302101Saeeduddin Ahmed, Rex Bierley, Java. (2000). Post-traumatic amnesia after closed head injury: a review of the literature and some suggestions for further research. Brain Injury, 14(9), 765-780. doi:10.1080/026990500421886Wilson, J. T., Hadley, D. M., Wiedmann, K. D., & Teasdale, G. M. (1995). Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. Journal of Neurology, Neurosurgery & Psychiatry, 59(3), 328-331. doi:10.1136/jnnp.59.3.328Wilson, J. T., Teasdale, G. M., Hadley, D. M., Wiedmann, K. D., & Lang, D. (1994). Post-traumatic amnesia: still a valuable yardstick. Journal of Neurology, Neurosurgery & Psychiatry, 57(2), 198-201. doi:10.1136/jnnp.57.2.198Fearing, M. A., Bigler, E. D., Wilde, E. A., Johnson, J. L., Hunter, J. V., Xiaoqi Li, … Levin, H. S. (2008). Morphometric MRI Findings in the Thalamus and Brainstem in Children After Moderate to Severe Traumatic Brain Injury. Journal of Child Neurology, 23(7), 729-737. doi:10.1177/0883073808314159Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., … Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564. doi:10.1212/wnl.0b013e3181cff5d
    corecore