58 research outputs found

    Geometrical-based lip-reading using template probabilistic multi-dimension dynamic time warping

    Get PDF
    By identifying lip movements and characterizing their associations with speech sounds, the performance of speech recognition systems can be improved, particularly when operating in noisy environments. In this paper, we present a geometrical-based automatic lip reading system that extracts the lip region from images using conventional techniques, but the contour itself is extracted using a novel application of a combination of border following and convex hull approaches. Classification is carried out using an enhanced dynamic time warping technique that has the ability to operate in multiple dimensions and a template probability technique that is able to compensate for differences in the way words are uttered in the training set. The performance of the new system has been assessed in recognition of the English digits 0 to 9 as available in the CUAVE database. The experimental results obtained from the new approach compared favorably with those of existing lip reading approaches, achieving a word recognition accuracy of up to 71% with the visual information being obtained from estimates of lip height, width and their ratio

    Investigation of dimensionality reduction in a finger vein verification system

    Get PDF
    Popular methods of protecting access such as Personal Identification Numbers and smart cards are subject to security risks that result from accidental loss or being stolen. Risk can be reduced by adopting direct methods that identify the person and these are generally biometric methods, such as iris, face, voice and fingerprint recognition approaches. In this paper, a finger vein recognition method has been implemented in which the effect on performance has of using principal components analysis has been investigated. The data were obtained from the finger-vein database SDMULA-HMT and the images underwent contrast-limited adaptive histogram equalization and noise filtering for contrast improvement. The vein pattern was extracted using repeated line tracking and dimensionality reduction using principal components analysis to generate the feature vector. A ‘speeded-up robust features’ algorithm was used to determine the key points of interest and the Euclidean Distance was used to estimate similarity between database images. The results show that the use of a suitable number of principal components can improve the accuracy and reduce the computational overhead of the verification system

    Experimental Study on Low Cost Biodiesel Production Alkaline Based Catalysts by Using Frying Oil

    Get PDF
    The primary aim of this research is to investigate the best alkaline-based for the used frying oil (UFO) biodiesel production, using the alkaline catalyzed transesterification method. Transesterification reaction of UFO with methanol, in the presence of several alkaline-based catalysts, is carried out under identical typical transesterification process parameters. The effects of catalyst formulation on biodiesel yield are evaluated by using five different alkaline catalysts, sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium methoxide (NaOCH3), mixture of NaOH and KOH, and mixture of KOH and NaOCH3 in the UFO biodiesel conversion process. A sample of virgin oil (VO) biodiesel is produced using NaOH catalyst, as the comparison reference for UFO biodiesel. The highest yield for UFO biodiesel production in this research was achieved by NaOCH3 catalyst, which gave 96.2% which shown that the NaOCH3 catalyst had advantages in yields-effective and times-effective for the biodiesel production. However, for commercialize purpose, the cost of NaOCH3 was too high which had made it not practical to use. In order to have a balance between yieldeffective, times-effective, and cost effective characteristics, the mixture of KOH and NaOH catalyst was found to be the optimum catalyst in this biodiesel production study

    Image fusion based multi resolution and frequency partition discrete cosine transform for palm vein recognition

    Get PDF
    The rapid growth of technology has increased the demand for automated security systems. Due to the accessibility of the palm region and the unique characteristics of each individual's palm vein features, such biometrics have been receiving particular attention. In the published research relating to palm vein biometrics, usually only a single image is used to supply the data for recognition purposes. Previous experimental work has demonstrated that the fusion of multiple images is able to provide richer feature information resulting in an improved classification performance. However, although most of the image fusion techniques are able to preserve the vein pattern, the fused image is often blurred, the colors are distorted and the spatial resolution reduced. In this paper, the multi-resolution discrete cosine transform (MRDCT) and frequency partition DCT (FPDCT) image fusion are applied and are able to extract the finer details of vein patterns while reducing the presence of noise in the image. The performance shows that the use of MRDCT and FPDCT was able to improve recognition rate compared to using a single image. The equal error rate improvement is also significant, falling to 9% in 700nm image, 7% in 850nm image and 6% in 940nm image

    Potentials and prospects of sport tourism in Malaysia: a theoretical perspective

    Get PDF
    Sport tourism has become a popular sub-sector in the tourism industry today. The success in organizing the World Conference on Sport Tourism in Barcelona, Spain 2001 was the beginning of more serious attention being paid to this sector and more widespread coverage in the years ahead. Until the early 1990s, tourism and sports existed as two distinct areas of activities. Until then, many scholars, decision-makers and governments involved in the field of tourism and sports perceived the profits for both sectors independently from one another, whereas the benefits generated by the synergy of both is far greater. In Malaysia, the success in organizing the race Le Tour de Langkawi in 1996 was a turning point in the government's focus on the development of the sport tourism sector. Currently, Malaysia is known for organizing several world-class sport events, among them the Royal Langkawi International Regatta (January), Ironman Triathlon (February), Formula 1 Grand Prix Malaysia (March), FEI Showjumping World Cup (May), PetronasPrimax 3 MerdekaMillineum Endurance Race (July), Super GT (August), Malaysian Motorcycle Grand Prix (September), A1GP Malaysia (November) and Monsoon Cup (December). All these world-class sporting events bring substantial returns to the society and the nation. The advantages of sports asa tourism attraction include the length of time in which the events take place, extensive publicity coverage through the print and electronic media, sponsorship from various domestic and multinational companies and business opportunities provided to local residents during the event

    Electrical discharge machining of polycrystalline diamond using copper electrode – finishing condition

    Get PDF
    Research on machining process of Polycrystalline Diamond (PCD) is becoming important as the material was believed suitable to be used for cutting tools of advanced aeronautical structure. Electrical Discharge Machining (EDM) was regarded as the suitable method to machine PCD due its noncontact process nature. The objective of this research is to determine the influence of several EDM parameter such as sparking current, pulse duration, and pulse interval to the material removal rate and surface roughness of the machined PCD. Instead of significantly influenced the material removal rate, the sparking current was also highly influenced tha surface roughness. Highest material removal rate of approximately 0.005mm3/s was recorded by the EDM process with the highest current used of 5A, and lowest pulse interval of 1µs. The influence of pulse duration is not clearly seen at the lowest pulse interval used. On the other hand, 0.4µm was the lowest surface roughness value obtained in this research indicated by the highest sparking current, highest sparking duration and lowest sparking interval of 5A, 1µs and 1µs respectively

    Embedded Character Recognition System using Random Forest Algorithm for IC Inspection System

    Get PDF
    Character recognition system based on human inspection is unpractical due to lack of accuracy and high cost. Therefore, investigating on automated character inspection system by computer is needed to improve the accuracy, reduce the cost and inspection time. In this project, a Beagle Bone Black (BBB) was used as a processing device and Logitech webcam was used for as an image acquisition device. Total of 1080 training samples will undergo the image pre-processing, character segmentation, feature extraction and training using random forest classifier. The optimal parameter values of random forest classifier are determined by computing crossvalidation misclassification rate. The maximum number of splits, number of trees, and learning rate that yields the zeromisclassification rate is 1, 39 and 0.10 respectively. The process of testing random forest classifier was done using SN74LS27N chip under five different illuminations: no LED, one LED, two LED, three LED and four LED. From the experiments, it shows that the proposed system able to achieve 90.00% of accuracy within 1second to recognize characters on the SN74LS27N chip compared to 65.56% accuracy of human inspection

    Pharmacognostic and Acute Toxicity Study of Burkea Africana Root

    Get PDF
    Burkea africana is a plant that belongs to then family Fabaceae; it is widely spread in tropical Africa including Nigeria. It is of valuable in  ethnomedicine especially in the treatment of antidote for venomous stings and bites, cutaneous and sub cutaneous parasitic infection, convulsion and pulmonary troubles. Despite the fact that roots of Burkea africana have several medicinal properties, no standardization parameter has been  assessed. Due to lack of standard parameters, proper identification and ascertaining quality and purity in the events of adulteration has been thwarted. The objective of the study was to establish some important pharmacognostic profile and safety margin of Burkea africana root with the hope of assisting in its standardization for quality, purity and safety. Elemental analysis was carried out using acid digestion method and phytochemical composition of the plants was evaluated using standard method. Acute toxicity was achieved using Lorke method to determine the LD50. Chemomicroscopical evaluation revealed the presence of cellulose, tannins, starch, lignin, calcium oxalate, suberin, aleurone grain and mucilage with the exception of calcium carbonate. The average moisture contents, total ash, acid insoluble, water soluble ash, alcohol extractive value and water extractive values in the powdered plant material were 3.8%, 7.5%, 4.43%, 8.07%, 25.0% and 20.33% respectively. In addition, Fe, Mn, Ni, Pb, Cd and Cu were found to be within the safety limit. Phytochemicals which include alkaloids, flavonoids, saponins, tannins, carbohydrates and triterpenes were detected in both aqueous and methanolic extracts. The LD50 of Burkea africana was found to be greater than 5000 mg /kg and could be considered safe for consumption. Keywords: Elemental analysis, Burkea africana, Pharmacognostic, Phytochemica

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation
    corecore