3,155 research outputs found

    Effects of fabric counts and weave designs on the properties of laminated woven kenaf carbon fibre reinforced epoxy hybrid composites

    Get PDF
    The effects of different fabric materials namely weave designs (plain and satin) and fabric counts (5 × 5 and 6 × 6) on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites were evaluated. The hybrid composites were fabricated from two types of fabric, i.e., woven kenaf that was made from a yarn of 500tex and carbon fibre, by using vacuum infusion technique and epoxy resin as matrix. The panels were tested for tensile, flexural, and impact strengths. The results have revealed that plain fabric is more suitable than satin fabric for obtaining high tensile and impact strengths. Using a fabric count of 5 × 5 has generated composites that are significantly higher in flexural modulus as compared to 6 × 6 which may be attributed to their structure and design. The scanned electron micrographs of the fractured surfaces of the composites demonstrated that plain woven fabric composites had better adhesion properties than satin woven fabric composites, as indicated by the presence of notably lower amount of fibre pull out

    An approach to solve Slavnov-Taylor identities in nonsupersymmetric non-Abelian gauge theories

    Get PDF
    We present a way to solve Slavnov--Taylor identities in a general nonsupersymmetric theory. The solution can be parametrized by a limited number of functions of spacetime coordinates, so that all the effective fields are dressed by these functions via integral convolution. The solution restricts the ghost part of the effective action and gives predictions for the physical part of the effective action.Comment: revised version, section 3 is enlarged, 24 pages, Latex2e, no figures, version accepted by Phys. Rev.

    Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp)

    Get PDF
    ABSTRACT. We searched the genome of Mycosphaerella fijiensis for molecular markers that would allow population genetics analysis of this plant pathogen. M. fijiensis, the causal agent of banana leaf streak disease, also known as black Sigatoka, is the most devastating pathogen attacking bananas (Musa spp). Recently, the entire genome sequence of M. fijiensis became available. We screened this database for VNTR markers. Forty-two primer pairs were selected for validation, based on repeat type and length and the number of repeat units. Five VNTR markers showing multiple alleles were validated with a reference set of isolates from different parts of the world and a population from a banana plantation in Costa Rica. Polymorphism information content values varied from 0.6414 to 0.7544 for the reference set and from 0.0400 and 0.7373 for the population set. Eighty percent of the polymorphism information content values were above 0.60, indicating that the markers are highly informative. These markers allowed robust scoring of agarose gels and proved to be useful for variability and population genetics studies. In conclusion, the strategy we developed to identify and validate VNTR markers is an efficient means to incorporate markers that can be used for fungicide resistance management and to develop breeding strategies to control banana black leaf streak disease. This is the first report of VNTR-minisatellites from the M. fijiensis genome sequence. Key words: Molecular markers; VNTRs; Genetic diversity; Population genetics; Black Sigatok

    Detecting fractions of electrons in the high-TcT_c cuprates

    Full text link
    We propose several tests of the idea that the electron is fractionalized in the underdoped and undoped cuprates. These include the ac Josephson effect, and tunneling into small superconducting grains in the Coulomb blockade regime. In both cases, we argue that the results are qualitatively modified from the conventional ones if the insulating tunnel barrier is fractionalized. These experiments directly detect the possible existence of the chargon - a charge ee spinless boson - in the insulator. The effects described in this paper provide a means to probing whether the undoped cuprate (despite it's magnetism) is fractionalized. Thus, the experiments discussed here are complementary to the flux-trapping experiment we proposed in our earlier work(cond-mat/0006481).Comment: 7 pages, 5 figure

    Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing

    Full text link
    In this article, we report the recent progress on decoherence dynamics of electrons in quantum dot quantum computing systems using the exact master equation we derived recently based on the Feynman-Vernon influence functional approach. The exact master equation is valid for general nanostructure systems coupled to multi-reservoirs with arbitrary spectral densities, temperatures and biases. We take the double quantum dot charge qubit system as a specific example, and discuss in details the decoherence dynamics of the charge qubit under coherence controls. The decoherence dynamics risen from the entanglement between the system and the environment is mainly non-Markovian. We further discuss the decoherence of the double-dot charge qubit induced by quantum point contact (QPC) measurement where the master equation is re-derived using the Keldysh non-equilibrium Green function technique due to the non-linear coupling between the charge qubit and the QPC. The non-Markovian decoherence dynamics in the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence and Entanglement" in Quantum Inf. Proces

    Search for a Standard Model Higgs Boson in CMS via Vector Boson Fusion in the H->WW->l\nu l\nu Channel

    Get PDF
    We present the potential for discovering the Standard Model Higgs boson produced by the vector-boson fusion mechanism. We considered the decay of Higgs bosons into the W+W- final state, with both W-bosons subsequently decaying leptonically. The main background is ttbar with one or more jets produced. This study is based on a full simulation of the CMS detector, and up-to-date reconstruction codes. The result is that a signal of 5 sigma significance can be obtained with an integrated luminosity of 12-72 1/fb for Higgs boson masses between 130-200 GeV. In addition, the major background can be measured directly to 7% from the data with an integrated luminosity of 30 1/fb. In this study, we also suggested a method to obtain information in Higgs mass using the transverse mass distributions.Comment: 26 pages, 22 figure

    Effects of Relativistic Dynamics in ppppπ0pp \to pp \pi^0 near Threshold

    Full text link
    The cross-section for threshold π0\pi^0 production in proton-proton collisions is evaluated in the framework of the covariant spectator description. The negative energy intermediate states are included non-perturbatively and seen to yield a considerably smaller contribution, when compared to perturbative treatments. A family of OBE-models with different off-shell scalar coupling is considered.Comment: 10 pages, 3 figures, 1 tabl

    Effects of metallic spacer in layered superconducting Sr2(Mgy_yTi1y_{1-y})O3FeAs

    Full text link
    The highly two-dimensional superconducting system Sr2(Mgy_yTi1y_{1-y})O3FeAs, recently synthesized in the range of 0.2 < y < 0.5, shows an Mg concentration-dependent TcT_c. Reducing the Mg concentration from y=0.5 leads to a sudden increase in TcT_c, with a maximum TcT_c ~40 K at y=0.2. Using first principles calculations, the unsynthesized stoichiometric y=0 and the substoichiometric y=0.5 compounds have been investigated. For the 50% Mg-doped phase (y=0.5), Sr2(Mgy_yTi1y_{1-y})O3 layers are completely insulating spacers between FeAs layers, leading to the fermiology such as that found for other Fe pnictides. At y=0, representing a phase with metallic Sr2TiO3 layers, the Γ\Gamma-centered Fe-derived Fermi surfaces (FSs) considerably shrink or disappear. Instead, three Γ\Gamma-centered Ti FSs appear, and in particular two of them have similar size, like in MgB2. Interestingly, FSs have very low Fermi velocity in large fractions: the lowest being 0.6×106\times10^6 cm/s. Furthermore, our fixed spin moment calculations suggest the possibility of magnetic ordering, with magnetic Ti and nearly nonmagnetic Fe ions. These results indicate a crucial role of Sr2(Mgy_yTi1y_{1-y})O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201

    Chern-Simons Solitons, Chiral Model, and (affine) Toda Model on Noncommutative Space

    Full text link
    We consider the Dunne-Jackiw-Pi-Trugenberger model of a U(N) Chern-Simons gauge theory coupled to a nonrelativistic complex adjoint matter on noncommutative space. Soliton configurations of this model are related the solutions of the chiral model on noncommutative plane. A generalized Uhlenbeck's uniton method for the chiral model on noncommutative space provides explicit Chern-Simons solitons. Fundamental solitons in the U(1) gauge theory are shaped as rings of charge `n' and spin `n' where the Chern-Simons level `n' should be an integer upon quantization. Toda and Liouville models are generalized to noncommutative plane and the solutions are provided by the uniton method. We also define affine Toda and sine-Gordon models on noncommutative plane. Finally the first order moduli space dynamics of Chern-Simons solitons is shown to be trivial.Comment: latex, JHEP style, 23 pages, no figur

    Observations of the post shock break-out emission of SN 2011dh with XMM-Newton

    Full text link
    After the occurrence of the type cIIb SN 2011dh in the nearby spiral galaxy M 51 numerous observations were performed with different telescopes in various bands ranging from radio to gamma-rays. We analysed the XMM-Newton and Swift observations taken 3 to 30 days after the SN explosion to study the X-ray spectrum of SN 2011dh. We extracted spectra from the XMM-Newton observations, which took place ~7 and 11 days after the SN. In addition, we created integrated Swift/XRT spectra of 3 to 10 days and 11 to 30 days. The spectra are well fitted with a power-law spectrum absorbed with Galactic foreground absorption. In addition, we find a harder spectral component in the first XMM-Newton spectrum taken at t ~ 7 d. This component is also detected in the first Swift spectrum of t = 3 - 10 d. While the persistent power-law component can be explained as inverse Compton emission from radio synchrotron emitting electrons, the harder component is most likely bremsstrahlung emission from the shocked stellar wind. Therefore, the harder X-ray emission that fades away after t ~ 10 d can be interpreted as emission from the shocked circumstellar wind of SN 2011dh.Comment: Accepted for publication as a Research Note in Astronomy and Astrophysic
    corecore