3,155 research outputs found
Effects of fabric counts and weave designs on the properties of laminated woven kenaf carbon fibre reinforced epoxy hybrid composites
The effects of different fabric materials namely weave designs (plain and satin) and fabric counts (5 × 5 and 6 × 6) on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites were evaluated. The hybrid composites were fabricated from two types of fabric, i.e., woven kenaf that was made from a yarn of 500tex and carbon fibre, by using vacuum infusion technique and epoxy resin as matrix. The panels were tested for tensile, flexural, and impact strengths. The results have revealed that plain fabric is more suitable than satin fabric for obtaining high tensile and impact strengths. Using a fabric count of 5 × 5 has generated composites that are significantly higher in flexural modulus as compared to 6 × 6 which may be attributed to their structure and design. The scanned electron micrographs of the fractured surfaces of the composites demonstrated that plain woven fabric composites had better adhesion properties than satin woven fabric composites, as indicated by the presence of notably lower amount of fibre pull out
An approach to solve Slavnov-Taylor identities in nonsupersymmetric non-Abelian gauge theories
We present a way to solve Slavnov--Taylor identities in a general
nonsupersymmetric theory. The solution can be parametrized by a limited number
of functions of spacetime coordinates, so that all the effective fields are
dressed by these functions via integral convolution. The solution restricts the
ghost part of the effective action and gives predictions for the physical part
of the effective action.Comment: revised version, section 3 is enlarged, 24 pages, Latex2e, no
figures, version accepted by Phys. Rev.
Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp)
ABSTRACT. We searched the genome of Mycosphaerella fijiensis for molecular markers that would allow population genetics analysis of this plant pathogen. M. fijiensis, the causal agent of banana leaf streak disease, also known as black Sigatoka, is the most devastating pathogen attacking bananas (Musa spp). Recently, the entire genome sequence of M. fijiensis became available. We screened this database for VNTR markers. Forty-two primer pairs were selected for validation, based on repeat type and length and the number of repeat units. Five VNTR markers showing multiple alleles were validated with a reference set of isolates from different parts of the world and a population from a banana plantation in Costa Rica. Polymorphism information content values varied from 0.6414 to 0.7544 for the reference set and from 0.0400 and 0.7373 for the population set. Eighty percent of the polymorphism information content values were above 0.60, indicating that the markers are highly informative. These markers allowed robust scoring of agarose gels and proved to be useful for variability and population genetics studies. In conclusion, the strategy we developed to identify and validate VNTR markers is an efficient means to incorporate markers that can be used for fungicide resistance management and to develop breeding strategies to control banana black leaf streak disease. This is the first report of VNTR-minisatellites from the M. fijiensis genome sequence. Key words: Molecular markers; VNTRs; Genetic diversity; Population genetics; Black Sigatok
Detecting fractions of electrons in the high- cuprates
We propose several tests of the idea that the electron is fractionalized in
the underdoped and undoped cuprates. These include the ac Josephson effect, and
tunneling into small superconducting grains in the Coulomb blockade regime. In
both cases, we argue that the results are qualitatively modified from the
conventional ones if the insulating tunnel barrier is fractionalized. These
experiments directly detect the possible existence of the chargon - a charge
spinless boson - in the insulator. The effects described in this paper
provide a means to probing whether the undoped cuprate (despite it's magnetism)
is fractionalized. Thus, the experiments discussed here are complementary to
the flux-trapping experiment we proposed in our earlier work(cond-mat/0006481).Comment: 7 pages, 5 figure
Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing
In this article, we report the recent progress on decoherence dynamics of
electrons in quantum dot quantum computing systems using the exact master
equation we derived recently based on the Feynman-Vernon influence functional
approach. The exact master equation is valid for general nanostructure systems
coupled to multi-reservoirs with arbitrary spectral densities, temperatures and
biases. We take the double quantum dot charge qubit system as a specific
example, and discuss in details the decoherence dynamics of the charge qubit
under coherence controls. The decoherence dynamics risen from the entanglement
between the system and the environment is mainly non-Markovian. We further
discuss the decoherence of the double-dot charge qubit induced by quantum point
contact (QPC) measurement where the master equation is re-derived using the
Keldysh non-equilibrium Green function technique due to the non-linear coupling
between the charge qubit and the QPC. The non-Markovian decoherence dynamics in
the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence
and Entanglement" in Quantum Inf. Proces
Search for a Standard Model Higgs Boson in CMS via Vector Boson Fusion in the H->WW->l\nu l\nu Channel
We present the potential for discovering the Standard Model Higgs boson
produced by the vector-boson fusion mechanism. We considered the decay of Higgs
bosons into the W+W- final state, with both W-bosons subsequently decaying
leptonically. The main background is ttbar with one or more jets produced. This
study is based on a full simulation of the CMS detector, and up-to-date
reconstruction codes. The result is that a signal of 5 sigma significance can
be obtained with an integrated luminosity of 12-72 1/fb for Higgs boson masses
between 130-200 GeV. In addition, the major background can be measured directly
to 7% from the data with an integrated luminosity of 30 1/fb. In this study, we
also suggested a method to obtain information in Higgs mass using the
transverse mass distributions.Comment: 26 pages, 22 figure
Effects of Relativistic Dynamics in near Threshold
The cross-section for threshold production in proton-proton
collisions is evaluated in the framework of the covariant spectator
description. The negative energy intermediate states are included
non-perturbatively and seen to yield a considerably smaller contribution, when
compared to perturbative treatments. A family of OBE-models with different
off-shell scalar coupling is considered.Comment: 10 pages, 3 figures, 1 tabl
Effects of metallic spacer in layered superconducting Sr2(MgTi)O3FeAs
The highly two-dimensional superconducting system
Sr2(MgTi)O3FeAs, recently synthesized in the range of 0.2 < y <
0.5, shows an Mg concentration-dependent . Reducing the Mg concentration
from y=0.5 leads to a sudden increase in , with a maximum ~40 K at
y=0.2. Using first principles calculations, the unsynthesized stoichiometric
y=0 and the substoichiometric y=0.5 compounds have been investigated. For the
50% Mg-doped phase (y=0.5), Sr2(MgTi)O3 layers are completely
insulating spacers between FeAs layers, leading to the fermiology such as that
found for other Fe pnictides. At y=0, representing a phase with metallic
Sr2TiO3 layers, the -centered Fe-derived Fermi surfaces (FSs)
considerably shrink or disappear. Instead, three -centered Ti FSs
appear, and in particular two of them have similar size, like in MgB2.
Interestingly, FSs have very low Fermi velocity in large fractions: the lowest
being 0.6 cm/s. Furthermore, our fixed spin moment calculations
suggest the possibility of magnetic ordering, with magnetic Ti and nearly
nonmagnetic Fe ions. These results indicate a crucial role of
Sr2(MgTi)O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201
Chern-Simons Solitons, Chiral Model, and (affine) Toda Model on Noncommutative Space
We consider the Dunne-Jackiw-Pi-Trugenberger model of a U(N) Chern-Simons
gauge theory coupled to a nonrelativistic complex adjoint matter on
noncommutative space. Soliton configurations of this model are related the
solutions of the chiral model on noncommutative plane. A generalized
Uhlenbeck's uniton method for the chiral model on noncommutative space provides
explicit Chern-Simons solitons. Fundamental solitons in the U(1) gauge theory
are shaped as rings of charge `n' and spin `n' where the Chern-Simons level `n'
should be an integer upon quantization. Toda and Liouville models are
generalized to noncommutative plane and the solutions are provided by the
uniton method. We also define affine Toda and sine-Gordon models on
noncommutative plane. Finally the first order moduli space dynamics of
Chern-Simons solitons is shown to be trivial.Comment: latex, JHEP style, 23 pages, no figur
Observations of the post shock break-out emission of SN 2011dh with XMM-Newton
After the occurrence of the type cIIb SN 2011dh in the nearby spiral galaxy M
51 numerous observations were performed with different telescopes in various
bands ranging from radio to gamma-rays. We analysed the XMM-Newton and Swift
observations taken 3 to 30 days after the SN explosion to study the X-ray
spectrum of SN 2011dh. We extracted spectra from the XMM-Newton observations,
which took place ~7 and 11 days after the SN. In addition, we created
integrated Swift/XRT spectra of 3 to 10 days and 11 to 30 days. The spectra are
well fitted with a power-law spectrum absorbed with Galactic foreground
absorption. In addition, we find a harder spectral component in the first
XMM-Newton spectrum taken at t ~ 7 d. This component is also detected in the
first Swift spectrum of t = 3 - 10 d. While the persistent power-law component
can be explained as inverse Compton emission from radio synchrotron emitting
electrons, the harder component is most likely bremsstrahlung emission from the
shocked stellar wind. Therefore, the harder X-ray emission that fades away
after t ~ 10 d can be interpreted as emission from the shocked circumstellar
wind of SN 2011dh.Comment: Accepted for publication as a Research Note in Astronomy and
Astrophysic
- …