887 research outputs found
Roles of neuro-exocytotic proteins at the neuromuscular junction
The aim of the studies described in the thesis was to elucidate the roles of several neuro-exocytotic proteins at the motor nerve terminal in neuromuscular synaptic transmission, making use of genetic knockout (KO) mice, each missing one (or more) neuro-exocytotic proteins. In addition, it was investigated in a pharmacological mouse model for myasthenia gravis whether some of these proteins play a role in the phenomenon of compensatory upregulation of acetylcholine release at the neuromuscular junction in this disease.NWO (903-42-073) Deutsche Forschungsgemeinschaft (SFB 406-C9)UBL - phd migration 201
Rapid antibody selection using surface plasmon resonance for high-speed and sensitive hazelnut lateral flow prototypes
Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10–20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.</p
On the oscillation spectrum of a magnetized core in a giant star
The spectrum of gravito-acoustic modes is depleted in dipolar modes for a significant fraction of the giant stars observed by the Kepler mission, a feature that has been explained by the presence of magnetic fields in the core of these stars (Fuller et al. 2015, Cantiello et al. 2016). We further investigate this possible scenario by considering first the oscillation spectrum of the core of a giant star modeled by a stably stratified, self-gravitating fluid of uniform density in a sphere pervaded by a uniform magnetic field. Our results show that the first effect of a magnetic field on the g-modes is to reduce their wavenumber and therefore reduce their damping. The magnetic effect, on this model, is therefore opposite Fuller’s et al scenario. Moreover, the model shows that it is not possible to change the damping rate without changing the frequency of the modes and this latter change is not observed. Because of the simplicity of our model, the magnetized core scenario cannot be dismissed but further investigations are needed, and other ways of explaining the presence of depressed modes should also be considered
Consumer-friendly food allergen detection : moving towards smartphone-based immunoassays
In this critical review, we provide a comprehensive overview of immunochemical food allergen assays and detectors in the context of their user-friendliness, through their connection to smartphones. Smartphone-based analysis is centered around citizen science, putting analysis into the hands of the consumer. Food allergies represent a significant worldwide health concern and consumers should be able to analyze their foods, whenever and wherever they are, for allergen presence. Owing to the need for a scientific background, traditional laboratory-based detection methods are generally unsuitable for the consumer. Therefore, it is important to develop simple, safe, and rapid assays that can be linked with smartphones as detectors to improve user accessibility. Smartphones make excellent detection systems because of their cameras, embedded flash functions, portability, connectivity, and affordability. Therefore, this review has summarized traditional laboratory-based methods for food allergen detection such as enzyme-linked-immunosorbent assay, flow cytometry, and surface plasmon resonance, and the potential to modernize these methods by interfacing them with a smartphone readout system, based on the aforementioned smartphone characteristics. This is the first review focusing on smartphone-based food-allergen detection methods designed with the intention of being consumer-friendly. [Figure not available: see fulltext.
From thermal rectifiers to thermoelectric devices
We discuss thermal rectification and thermoelectric energy conversion from
the perspective of nonequilibrium statistical mechanics and dynamical systems
theory. After preliminary considerations on the dynamical foundations of the
phenomenological Fourier law in classical and quantum mechanics, we illustrate
ways to control the phononic heat flow and design thermal diodes. Finally, we
consider the coupled transport of heat and charge and discuss several general
mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Prospects for asteroseismology
The observational basis for asteroseismology is being dramatically
strengthened, through more than two years of data from the CoRoT satellite, the
flood of data coming from the Kepler mission and, in the slightly longer term,
from dedicated ground-based facilities. Our ability to utilize these data
depends on further development of techniques for basic data analysis, as well
as on an improved understanding of the relation between the observed
frequencies and the underlying properties of the stars. Also, stellar modelling
must be further developed, to match the increasing diagnostic potential of the
data. Here we discuss some aspects of data interpretation and modelling,
focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar
modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space
Sci., in the press Revision: correcting abscissa labels on Figs 1 and
What CoRoT tells us about Scuti stars: Existence of a regular pattern and seismic indices to characterize stars
Inspired by the so appealing example of red giants, where going from a handful of stars to thousands revealed the structure of the eigenspectrum, we inspected a large homogeneous set of around 1860 {\delta} Scuti stars observed with CoRoT. This unique data set reveals a common regular pattern which appears to be in agreement with island modes featured by theoretical non-perturbative treatments of fast rotation. The comparison of these data with models and linear stability calculations suggests that spectra can be fruitfully characterized to first order by a few parameters which might play the role of seismic indices for {\delta} Scuti stars, as {\Delta \nu} and {\nu_{max}} do for red giants. The existence of this pattern offers an observational support for guiding further theoretical works on fast rotation. It also provides a framework for further investigation of the observational material collected by CoRoT and Kepler. Finally, it sketches out the perspective of using {\delta} Scuti stars pulsations for ensemble asteroseismology.The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by the Centre Na- tional d’Etudes Spatiales (CNES), with contributions from Aus- tria, Belgium, Brazil, the European Space Agency (RSSD and Science Programme), Germany and Spain. We ac- knowledge the support from the EC Project SpaceInn (FP7- SPACE-2012-312844). EM, KB, RS and DR acknowledge the support from the Programme de Physique Stellaire (PNPS). AGH acknowledges support from Fundação para a Ciên- cia e a Tecnologia (FCT, Portugal) through the fellowship SFRH / BPD / 80619 / 2011. JCS acknowledges funding support from Spanish public funds for research under project ESP201 5- 65712-C5-5-R (MINECO / FEDER), and under Research Fellow- ship program “Ramón y Cajal” (MINECO / FEDER
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
- …