114 research outputs found
Bayesian Updating of Material Balances Covariance Matrices Using Training Data
The main quantitative measure of nuclear safeguards effectiveness is nuclear material accounting (NMA), which consists of sequences of measured material balances that should be close to zero if there is no loss of special nuclear material such as Pu. NMA is essentially “accounting with measurement errors,” which arise from good, but imperfect, measurements. The covariance matrix MB of a sequence of material balances is the key quantity that determines the probability to detect loss. There is a recent push to include process monitoring (PM) data along with material balances from NMA in new schemes to monitor for material loss. PM data includes near-real-time measurements by the operator to monitor and control process operations. One concern regarding PM data is the need to estimate normal behavior of PM residuals, which requires a training period prior to ongoing testing for material loss. Assuming that a training period is used for PM data prior to its use in statistical testing for loss, that same training period could also be used for improving the estimate of MB that is used in NMA. We consider updating MB using training data with a Bayesian approach. A simulation study assesses the improvement gained with larger amounts of training data
Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation
We study the effect of semicore states on the self-energy corrections and
electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are
computed within the GW approach, and electronic states are expanded in a
plane-wave basis. For these materials, we generate {\it ab initio}
pseudopotentials treating as valence states the outermost two shells of atomic
orbitals, rather than only the outermost valence shell as in traditional
pseudopotential calculations. The resulting direct and indirect energy gaps are
compared with experimental measurements and with previous calculations based on
pseudopotential and ``all-electron'' approaches. Our results show that,
contrary to recent claims, self-energy effects due to semicore states on the
band gaps can be well accounted for in the standard valence-only
pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Exo-hydrogenated Single Wall Carbon Nanotubes
An extensive first-principles study of fully exo-hydrogenated zigzag (n,0)
and armchair (n,n) single wall carbon nanotubes (CH), polyhedral
molecules including cubane, dodecahedrane, and CH points to
crucial differences in the electronic and atomic structures relevant to
hydrogen storage and device applications. CH's are estimated to be
stable up to the radius of a (8,8) nanotube, with binding energies proportional
to 1/R. Attaching a single hydrogen to any nanotube is always exothermic.
Hydrogenation of zigzag nanotubes is found to be more likely than armchair
nanotubes with similar radius. Our findings may have important implications for
selective functionalization and finding a way of separating similar radius
nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical
Review
All-electron GW calculation based on the LAPW method: application to wurtzite ZnO
We present a new, all-electron implementation of the GW approximation and
apply it to wurtzite ZnO. Eigenfunctions computed in the local-density
approximation (LDA) by the full-potential linearized augmented-plane-wave
(LAPW) or the linearized muffin-tin-orbital (LMTO) method supply the input for
generating the Green function G and the screened Coulomb interaction W. A mixed
basis is used for the expansion of W, consisting of plane waves in the
interstitial region and augmented-wavefunction products in the
augmentation-sphere regions. The frequency-dependence of the dielectric
function is computed within the random-phase approximation (RPA), without a
plasmon-pole approximation. The Zn 3d orbitals are treated as valence states
within the LDA; both core and valence states are included in the self-energy
calculation. The calculated bandgap is smaller than experiment by about 1eV, in
contrast to previously reported GW results. Self-energy corrections are
orbital-dependent, and push down the deep O 2s and Zn 3d levels by about 1eV
relative to the LDA. The d level shifts closer to experiment but the size of
shift is underestimated, suggesting that the RPA overscreens localized states.Comment: 10 pages, 3 figures, submitted to Phys. Rev.
Electronic Structure of Carbon Nanotube Ropes
We present a tight binding theory to analyze the motion of electrons between
carbon nanotubes bundled into a carbon nanotube rope. The theory is developed
starting from a description of the propagating Bloch waves on ideal tubes, and
the effects of intertube motion are treated perturbatively in this basis.
Expressions for the interwall tunneling amplitudes between states on
neighboring tubes are derived which show the dependence on chiral angles and
intratube crystal momenta. We find that conservation of crystal momentum along
the tube direction suppresses interwall coherence in a carbon nanorope
containing tubes with random chiralities. Numerical calculations are presented
which indicate that electronic states in a rope are localized in the transverse
direction with a coherence length corresponding to a tube diameter.Comment: 15 pages, 10 eps figure
Allowed Gamow-Teller Excitations from the Ground State of 14N
Motivated by the proposed experiment , we study the
final states which can be reached via the allowed Gamow-Teller mechanism. Much
emphasis has been given in the past to the fact that the transition matrix
element from the ground state of to the ground state of is very close to zero, despite the fact that all
the quantum numbers are right for an allowed transition. We discuss this
problem, but, in particular, focus on the excitations to final states with
angular momenta and . We note that the summed strength to the
states, calculated with a wide variety of interactions, is
significantly larger than that to the final states.Comment: Submitted to Phys. Rev.
Backward diode composed of a metallic and semiconducting nanotube
The conditions necessary for a nanotube junction connecting a metallic and
semiconducting nanotube to rectify the current are theoretically investigated.
A tight binding model is used for the analysis, which includes the Hartree-Fock
approximation and the Green's function method.
It is found that the junction has a behavior similar to the backward diode if
the gate electrode is located nearby and the Fermi level of the semiconducting
tube is near the gap.
Such a junction would be advantageous since the required length for the
rectification could be reduced.Comment: 4 pages, RevTeX, uses epsf.st
Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes
Using first-principles total-energy pseudopotential calculations, we have
studied the properties of chains of potassium and aluminum in nanotubes. For BN
tubes, there is little interaction between the metal chains and the tubes, and
the conductivity of these tubes is through carriers located at the inner part
of the tube. In contrast, for small radius carbon nanotubes, there are two
types of interactions: charge-transfer (dominant for alkali atoms) leading to
strong ionic cohesion, and hybridization (for multivalent metal atoms)
resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show
that both effects contribute. New electronic properties related to these
confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation
We present a systematic analysis of the effect of radial deformation on the
atomic and electronic structure of zigzag and armchair single wall carbon
nanotubes using the first principle plane wave method. The nanotubes were
deformed by applying a radial strain, which distorts the circular cross section
to an elliptical one. The atomic structure of the nanotubes under this strain
are fully optimized, and the electronic structure is calculated
self-consistently to determine the response of individual bands to the radial
deformation. The band gap of the insulating tube is closed and eventually an
insulator-metal transition sets in by the radial strain which is in the elastic
range. Using this property a multiple quantum well structure with tunable and
reversible electronic structure is formed on an individual nanotube and its
band-lineup is determined from first-principles. The elastic energy due to the
radial deformation and elastic constants are calculated and compared with
classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200
Magnetic polarons in weakly doped high-Tc superconductors
We consider a spin Hamiltonian describing - exchange interactions
between localized spins of a finite antiferromagnet as well as -
interactions between a conducting hole () and localized spins. The spin
Hamiltonian is solved numerically with use of Lanczos method of
diagonalization. We conclude that - exchange interaction leads to
localization of magnetic polarons. Quantum fluctuations of the antiferromagnet
strengthen this effect and make the formation of polarons localized in one site
possible even for weak - coupling. Total energy calculations, including
the kinetic energy, do not change essentially the phase diagram of magnetic
polarons formation. For parameters reasonable for high- superconductors
either a polaron localized on one lattice cell or a small ferron can form. For
reasonable values of the dielectric function and - coupling, the
contributions of magnetic and phonon terms in the formation of a polaron in
weakly doped high- materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure
- …