680 research outputs found
Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment
Estimating the permeability of superficial deposits is fundamental to many aspects of catchment science, but can be problematic where insufficient in situ measurements are available from pumping tests in piezometers. Consequently, common practice is to estimate permeability from the material description or, where available, particlesize distribution using a formula such as Hazen. In this study, we examine the relationships between particlesize, relativedensity and hydraulicconductivity in superficial deposits in Morayshire, Northern Scotland: a heterogeneous environment typical of many catchments subject to previous glaciations. The superficial deposits comprise glaciofluvial sands and gravels, glacial tills and moraines, raised marine sediments, and blown sands. Thirty-eight sites were investigated: hydraulicconductivity measurements were made using repeated Guelph permeameter measurements, cone resistance was measured in situ with a Panda dynamic cone penetrometer; material descriptions were made in accordance with BS5930:1999; and disturbed samples were taken for particlesize analysis. Overall hydraulicconductivity (K) varied from 0.001 m/d to >40 m/d; glacial till had the lowest K (median 0.027 m/d) and glacial moraine the highest K (median 30 m/d). However, within each geological unit there was great variability in measured hydraulicconductivity values. Multiple linear regression of the data indicated that log d10 and relativedensity (indicated by cone resistance or BS5930:1999 soil state description) were independent predictors of log K and together gave a relationship with an R2 of 0.80. Material description using the largest fraction (e.g. sand or gravel) had little predictive power. Therefore, in heterogeneous catchments, the permeability of superficial deposits is most strongly related to the finest fraction (d10) and relativedensity of the material. In situ Guelph permeameter measurements at outcrops with good geological characterisation provide an easy and reliable method of determining the permeability of particular units of superficial deposits
Absence of Persistent Magnetic Oscillations in Type-II Superconductors
We report on a numerical study intended to examine the possibility that
magnetic oscillations persist in type II superconductors beyond the point where
the pairing self-energy exceeds the normal state Landau level separation. Our
work is based on the self-consistent numerical solution for model
superconductors of the Bogoliubov-deGennes equations for the vortex lattice
state. In the regime where the pairing self-energy is smaller than the
cyclotron energy, magnetic oscillations resulting from Landau level
quantization are suppressed by the broadening of quasiparticle Landau levels
due to the non-uniform order parameter of the vortex lattice state, and by
splittings of the quasiparticle bands. Plausible arguments that the latter
effect can lead to a sign change of the fundamental harmonic of the magnetic
oscillations when the pairing self-energy is comparable to the cyclotron energy
are shown to be flawed. Our calculations indicate that magnetic oscillations
are strongly suppressed once the pairing self-energy exceeds the Landau level
separation.Comment: 7 pages, revtex, 7 postscript figure
Perturbative spectrum of Trapped Weakly Interacting Bosons in Two Dimensions
We study a trapped Bose-Einstein condensate under rotation in the limit of
weak, translational and rotational invariant two-particle interactions. We use
the perturbation-theory approach (the large-N expansion) to calculate the
ground-state energy and the excitation spectrum in the asymptotic limit where
the total number of particles N goes to infinity while keeping the total
angular momentum L finite. Calculating the probabilities of different
configurations of angular momentum in the exact eigenstates gives us a clear
view of the physical content of excitations. We briefly discuss the case of
repulsive contact interaction.Comment: Revtex, 10 pages, 1 table, to appear in Phys. Rev.
Comments on Half S-Branes
Following hep-th/0305177, we write the boundary state of half S-brane in
bosonic string theory as a grand canonical partition function of a unitary
matrix model. From this representation, it follows that the annulus amplitude
can be written as a grand canonical partition function of a unitary two-matrix
model. We also show that the contribution of the exponentially growing
couplings to the timelike oscillators can be resummed in a certain annulus
amplitude.Comment: 27 pages, lanlmac; v2: reference adde
Mixed-State Quasiparticle Spectrum for d-wave Superconductors
Controversy concerning the pairing symmetry of high- materials has
motivated an interest in those measurable properties of superconductors for
which qualitative differences exist between the s-wave and d-wave cases. We
report on a comparison between the microscopic electronic properties of d-wave
and s-wave superconductors in the mixed state. Our study is based on
self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes
equations for phenomenological BCS models which have s-wave and d-wave
condensates in the absence of a magnetic field. We discuss differences between
the s-wave and the d-wave local density-of-states, both near and away from
vortex cores. Experimental implications for both scanning-tunneling-microscopy
measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques
Critical Currents of Ideal Quantum Hall Superfluids
Filling factor bilayer electron systems in the quantum Hall regime
have an excitonic-condensate superfluid ground state when the layer separation
is less than a critical value . On a quantum Hall plateau current
injected and removed through one of the two layers drives a dissipationless
edge current that carries parallel currents, and a dissipationless bulk
supercurrent that carries opposing currents in the two layers. In this paper we
discuss the theory of finite supercurrent bilayer states, both in the presence
and in the absence of symmetry breaking inter-layer hybridization. Solutions to
the microscopic mean-field equations exist at all condensate phase winding
rates for zero and sufficiently weak hybridization strengths. We find, however,
that collective instabilities occur when the supercurrent exceeds a critical
value determined primarily by a competition between direct and exchange
inter-layer Coulomb interactions. The critical current is estimated using a
local stability criterion and varies as when approaches
from below. For large inter-layer hybridization, we find that the
critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure
Low-Temperature Specific Heat of an Extreme-Type-II Superconductor at High Magnetic Fields
We present a detailed study of the quasiparticle contribution to the
low-temperature specific heat of an extreme type-II superconductor at high
magnetic fields. Within a T-matrix approximation for the self-energies in the
mixed state of a homogeneous superconductor, the electronic specific heat is a
linear function of temperature with a linear- coefficient
being a nonlinear function of magnetic field . In the range of magnetic
fields H\agt (0.15-0.2)H_{c2} where our theory is applicable, the calculated
closely resembles the experimental data for the borocarbide
superconductor YNiBC.Comment: 7 pages, 2 figures, to appear in Physical Review
Thermodynamic magnetization of a strongly correlated two-dimensional electron system
We measure thermodynamic magnetization of a low-disordered, strongly
correlated two-dimensional electron system in silicon. Pauli spin
susceptibility is observed to grow critically at low electron densities -
behavior that is characteristic of the existence of a phase transition. A new,
parameter-free method is used to directly determine the spectrum
characteristics (Lande g-factor and the cyclotron mass) when the Fermi level
lies outside the spectral gaps and the inter-level interactions between
quasiparticles are avoided. It turns out that, unlike in the Stoner scenario,
the critical growth of the spin susceptibility originates from the dramatic
enhancement of the effective mass, while the enhancement of the g-factor is
weak and practically independent of the electron density.Comment: As publishe
Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air–liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed
Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics
When Lenz proposed a simple model for phase transitions in magnetism, he
couldn't have imagined that the "Ising model" was to become a jewel in field of
equilibrium statistical mechanics. Its role spans the spectrum, from a good
pedagogical example to a universality class in critical phenomena. A quarter
century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing
a seemingly trivial modification to the Ising lattice gas, they took it into
the vast realms of non-equilibrium statistical mechanics. An abundant variety
of unexpected behavior emerged and caught many of us by surprise. We present a
brief review of some of the new insights garnered and some of the outstanding
puzzles, as well as speculate on the model's role in the future of
non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting,
Rutgers, NJ (December, 2008
- …