155 research outputs found

    Chern-Simons action for zero-mode supporting gauge fields in three dimensions

    Get PDF
    Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an explicit counter-example.Comment: version as published in PRD, minor change

    Catalysis and evolution on cycling of nano-structured magnesium multilayer thin films

    Get PDF
    This paper explores the hydrogen cycling properties of Mg/Cr and Mg/V multilayer thin films and studies the effect of chromium and vanadium transition metal catalysts on the cycling properties of thick magnesium coatings. Two transition-metal catalysed magnesium-based multilayer PVD coatings are compared with a non-catalysed magnesium control sample. The (micro-)structural evolution of the thin film coatings into fine, flakey powders is studied in depth using XRD, SEM and TEM and the hydrogen storage properties of all three materials are assessed using volumetric, gravimetric and calorimetric methods focussing on the effect of the microstructure and composition of the coatings on the hydrogen storage kinetics. It was found that the chromiumcatalysed coating had the most favourable hydrogen storage kinetics with an activation energy for the dehydrogenation reaction of 65.7±2.5 kJ mol-1 and a hydrogen capacity of 6.1±0.3 wt%. The mechanism of the dehydrogenation reaction of the catalysed samples was studied using the CV and JMAK kinetic models and it was found that the catalyst material influenced not only the hydrogen storage kinetics but also the mechanism of the reaction

    Hybrid gap plasmon GaAs nanolasers

    Get PDF
    Compact semiconductor lasers with sub-wavelength-scale dimensions rely heavily on materials with low surface recombination due to the large surface area to volume ratios of their nano-cavities. Furthermore, the reliance on semiconductor nanostructures has led to predominantly bottom-up fabrication approaches, which has hindered scalable and practical applications. In this letter, we present lithographically constructed hybrid gap plasmon nanolasers using the gain of bulk GaAs operating at room temperature. The nanolasers are built on GaAs suspended membranes with InGaP passivation layers. Laser resonators are defined only by patterning gold on top of these GaAs membranes, thus eliminating the need to etch the semiconductor for optical confinement, which would intro duce additional surface recombination. An analysis of the modal gain and losses in these devices suggests that threshold carrier densities in the range of 4-5×1018 cm -3 are necessary - potentially achievable with current densities as low as 6-8 kA cm-2

    Induced vacuum energy-momentum tensor in the background of a d-2 - brane in d+1 - dimensional space-time

    Get PDF
    Charged scalar field is quantized in the background of a static d-2 - brane which is a core of the magnetic flux lines in flat d+1 - dimensional space-time. We find that vector potential of the magnetic core induces the energy-momentum tensor in the vacuum. The tensor components are periodic functions of the brane flux and holomorphic functions of space dimension. The dependence on the distance from the brane and on the coupling to the space-time curvature scalar is comprehensively analysed.Comment: 32 pages, 3 figures, journal version, some references adde

    Fermionic Vacuum Energy from a Nielsen-Olesen Vortex

    Full text link
    We calculate the vacuum energy of a spinor field in the background of a Nielsen-Olesen vortex. We use the method of representing the vacuum energy in terms of the Jost function on the imaginary momentum axis. Renormalization is carried out using the heat kernel expansion and zeta functional regularization. With this method well convergent sums and integrals emerge which allow for an efficient numerical calculation of the vacuum energy in the given case where the background is not known analytically but only numerically. The vacuum energy is calculated for several choices of the parameters and it turns out to give small corrections to the classical energy.Comment: 22 pages, 6 figure

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let

    High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe

    Full text link
    We report on the realization of a high quality distributed Bragg reflector with both high and low refractive index layers lattice matched to ZnTe. Our structure is grown by molecular beam epitaxy and is based on binary compounds only. The high refractive index layer is made of ZnTe, while the low index material is made of a short period triple superlattice containing MgSe, MgTe, and ZnTe. The high refractive index step of Delta_n=0.5 in the structure results in a broad stopband and the reflectivity coefficient exceeding 99% for only 15 Bragg pairs.Comment: 4 pages, 3 figure

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at TcT_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TNT_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
    corecore